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Abstract
We rigorously prove that a wide class of one-dimensional growth models with
on-site periodic potential, such as the discrete sine-Gordon model, have no
phase transition at any temperature T > 0. The proof relies on the spectral
analysis of the transfer operator associated with the models. We show that this
operator is Hilbert–Schmidt and that its maximum eigenvalue is an analytical
function of temperature.
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1. Introduction

Physicists educated during the last half century have invariably been taught that one-
dimensional systems with short range forces can never have a phase transition. In point
of fact, there does not exist a general proof of such a theorem (Lieb and Mattis 1966), and
most instances of this statement refer to a theorem proved by van Hove (1950) that applies
to a very specific class of models. Indeed, van Hove’s result holds only for homogeneous
fluid-like models, with pairwise interactions with a hard core and a cut-off, and in the absence
of an external field. The same is true for Ruelle’s extension of van Hove’s theorem to lattice
fluids (Ruelle 1989). In particular, external fields can give rise to phase transitions in one-
dimensional models, as has been recently shown (Dauxois and Peyrard 1995, Dauxois et al
2001).

In this paper, we prove that a wide class of one-dimensional models (specified below)
subjected to external fields cannot exhibit phase transitions. As far as we know, this is a
completely new result in so far as van Hove’s theorem does not apply because, (a) there is
an external field, and (b) interaction depends on degrees of freedom other than the distance
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between ‘particles’. The models we discuss are especially relevant to thin film growth, as they
include, as a particular case, a paradigmatic example in this field, namely the sine-Gordon
model. Once again, it is very often claimed that one-dimensional ‘surfaces’ are always rough,
but none of the many times this claim is found in the literature is supported by rigorous results;
hence the importance of identifying a class of models for which this statement can be proven,
as its applicability in general is, at best, dubious (Cuesta et al 2001). The work we report
in this paper contributes to the advance along this direction by identifying precisely such a
family of models and subsequently proving a theorem that guarantees the analyticity of the
free energy. The consequences of this result and related comments close the paper.

2. Model

The result reported in this paper is motivated by work on the discrete sine-Gordon (sG) model
which, in one dimension, is defined by

HsG =
N∑

i=1

{
(hi−1 − hi)

2 + V0[1 − cos(2πhi)]
}
. (1)

This model was proposed to model surface growth in two dimensions (hi is understood as the
height above site i on a lattice) and shown to have a so-called roughening transition (the surface
width becomes infinite above some finite temperature) by Chui and Weeks (1978); see also
Weeks and Gilmer (1979). The rationale for such a proposal is the inclusion of the minimal
ingredients intervening in the growth process: surface tension (represented by the harmonic
interaction) and finite size of the atoms joining the surface (represented by the cosine term
that favours integer values for the height). In one dimension, this model has been studied
in detail in the late 1970s by means of a transfer operator approach (Gupta and Sutherland
1976, Currie et al 1977, Guyer and Miller 1978, Schneider and Stoll 1980); see Tsuzuki and
Sasaki (1988) for a review. However, in spite of the fact that the transfer operator calculations
are formally exact, the final result is in every case an expression of the partition function
(and hence the free energy) in terms of the maximum eigenvalue, which cannot be computed
exactly. In addition, most of these studies were concerned with the continuum limit of the sG
model, i.e. the limit of the Hamiltonian (1) when the lattice spacing tends to zero. In this limit,
approximate results can be obtained for the statistical mechanics of the system which suggest
(e.g. Schneider and Stoll 1980) that there are no phase transitions (specifically, that the width
is infinite at any non-zero temperature), but by no means constitute a rigorous proof.

In view of the lack of exact results on the existence of phase transitions for the 1D sG
model, we set out to establish a theorem for a class of models (including the sG model) as
wide as possible. To this end, we consider the systems defined by the Hamiltonian

H =
N∑

i=1

{W(hi−1 − hi) + B(hi)} (2)

where W(x) = W(−x) and B(x) = B(x + 1) is the external field acting on every site
(the periodicity being related to the lattice crystalline potential). The choice W(x) = x2

and B(x) = V0(1 − cos 2πx) corresponds to the discrete sG model (1), but our theorem
includes much more general choices, as long as W increases with |x| sufficiently rapidly (see
equation (4) and B remains bounded and periodic. To fix the energy scale we may take, without
loss of generality, W(0) = B(0) = 0.

We assume periodic boundary conditions, i.e. h0 = hN, and in principle the hi can take any
real value (heights can be anything above or below an absolute reference height). However, for
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any configuration of the heights {h1, . . . , hN } there are countably many other configurations
with the same energy, namely {h1 +k, . . . , hN +k}, k ∈ Z, so all of them are equivalent and we
can restrict our configuration space to be R

N modulo this equivalence. This is easily achieved
by restricting the set of variables to be

(− 1
2 , 1

2

] × R
N−1. Having specified precisely the scope

of our study, we can now proceed to prove our main result.

3. Analyticity of the free energy as a function of temperature

The partition function for the Hamiltonian (2) is

ZN(β) =
∫ 1/2

−1/2
dh1

∫ ∞

−∞
dh2 · · ·

∫ ∞

−∞
dhN e−βH (3)

where β is the inverse of temperature in units of the Boltzmann constant. The existence of the
partition function is guaranteed if W(x) is such that∫ ∞

0
dx e−βW(x) < 0 for all β > 0. (4)

This defines the class of functions W(x) for which the result holds. (Note that cases in which
W(x) = ∞ for x > x0 are also included.)

Let us introduce the decomposition hi = ni + φi , where ni ∈ Z and − 1
2 < φi � 1

2
(i = 1, . . . , N). Obviously n1 = 0. This transforms ZN (β) into

ZN(β) =
∫

[− 1
2 , 1

2 ]N
dφ

N∏
i=1

e−βB(φi)
∑

n∈{0}×Z
N−1

N∏
i=1

exp{−βW(ni−1 − ni + φi−1 − φi)} (5)

where φ ≡ (φ1, . . . , φN), n ≡ (n1, . . . , nN ) and, of course, n0 = nN and φ0 = φN . The
Fourier series

V (β, φ, θ) ≡
∞∑

n=−∞
e−βW(n+φ)e−inθ (6)

defines a 2π-periodic function of θ . Condition (4) makes the series (6) converge uniformly in
θ for every φ ∈ R and Reβ > 0; hence V is a continuous function of θ . Also, if W(x) > 0
for all x sufficiently large, the series converges uniformly in compacts of Reβ > 0, so by the
analytic convergence theorem V is holomorphic in Reβ > 0.

We can now introduce the formula for the coefficients of (6),

e−βW(n+φ) = 1

2π

∫ π

−π

dθV (β, φ, θ) einθ (7)

into equation (5) and make use of the identity
∑

n∈Z
einx = 2π

∑
k∈Z

δ(x − 2kπ) to get

ZN(β) =
∫

[− 1
2 , 1

2 ]N
dφ

N∏
i=1

e−βB(φi)
1

2π

∫ π

−π

dθ

N∏
i=1

V (β, φi−1 − φi, θ). (8)

If we define the integral operator

Tβ,θf (φ) ≡
∫ 1/2

−1/2
dφ′Tβ,θ (φ, φ′)f (φ′) (9)

Tβ,θ (φ, φ′) ≡ V (β, φ − φ′, θ) exp

{
−β

2
[B(φ) + B(φ′)]

}
(10)
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the partition function (8) adopts the simple form

ZN(β) = 1

2π

∫ π

−π

dθ Tr(Tβ,θ )
N . (11)

Except for the average in θ , Tβ,θ is a transfer operator for this model.
According to the definition (6), V (β,−φ, θ) = V (β, φ, θ)∗; on the other hand,∫ 1/2

−1/2
dφ

∫ 1/2

−1/2
dφ′|Tβ,θ (φ, φ′)|2 < ∞ (12)

so for every −π < θ < π and β > 0, Tβ,θ is a Hilbert–Schmidt operator in L2
([− 1

2 , 1
2

])
(hence compact and Hermitian). The whole spectrum of a compact,Hermitian operator (Young
1988) consists of a finite or infinite sequence of real, isolated eigenvalues, λn. If infinite, the
sequence tends to zero (which may or may not be itself an eigenvalue). Besides, because of
(12), a Hilbert–Schmidt operator also satisfies

∑
n λ2

n < ∞. Consequently,

Tr(Tβ,θ )
N =

∑
n�1

[λn(β, θ)]N = m(β, θ)[λmax(β, θ)]N [1 + o(1)] as N → ∞ (13)

m(β, θ) being the (finite) multiplicity of the largest eigenvalue λmax(β, θ) (which is then
necessarily positive). Note that the above series converges for any N � 2.

If we now apply Laplace’s method (de Bruijn 1981),

−f (β) ≡ lim
N→∞

1

N
ln ZN(β) = max

−π�θ�π
ln[λmax(β, θ)]. (14)

Now, 0 < Tr(Tβ,θ )
N = ∣∣Tr(Tβ,θ )

N
∣∣ � Tr |Tβ,θ |N � Tr(Tβ,0)

N , where |Tβ,θ | denotes the
integral operator with kernel the absolute value of the kernel (10), and the last inequality
follows from the definition (6). This implies that λmax(β, θ) attains its maximum value at
θ = 0. But Tβ,0 satisfies the hypothesis of the Jentzsch–Perron theorem for positive operators
in Banach lattices (Meyer–Nieberg 1991), so λmax(β, 0) has multiplicity 1 for any β > 0. This
being so, the holomorphy of the kernel in Reβ > 0 implies that of λmax(β, 0) (Kato 1995) and
hence of f (β) in (14).

4. Conclusions

We have proved that the free energy of a class of 1D models for growth of crystalline thin films
is analytical for any finite temperature. This mathematical result translates into the physical
realm as a strict prohibition of phase transitions in this class of models. To our knowledge,
this is the first time that such a theorem is rigorously shown true for these models. Note,
however, that the analyticity of the free energy does not exclude the existence of more or less
sharp (dynamical) crossovers in the model behaviour: all we prove here is that these systems
cannot have a true, thermodynamic phase transition.

A question that the result we are reporting in this paper immediately gives rise to is
whether or not the result can be generalized to (a) any one-dimensional model, or at least to (b)
any growth model. The answer to (a) is no, as there are well-known and old counterexamples
(e.g., Nagle 1968, Kittel 1969; note that these models include forbidden, infinite energy
configurations which render their transfer matrices reducible and imply that the Perron–
Frobenius (Horn and Johnson 1985) theorem does not apply to them, making possible their
phase transitions) and more recent ones (Dauxois and Peyrard 1995, Dauxois et al 2001; these
models do not have infinite energy configurations, as in our problem); restricting ourselves to
growth models, the answer to (b) is also no (Yeomans 1992, Cuesta et al 2001). However, the
theorem we are reporting here can be extended to include a much wider class of models than
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those discussed here. Such a generalization will be the subject of a forthcoming publication
(Cuesta and Sánchez 2001).
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