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Using Monte Carlo simulation and fundamental measure theory we study the phase diagram of a
two-dimensional lattice gas model with a nearest neighbor hard core exclusion and a next-to-nearest
neighbor finite repulsive interaction. The model presents two competing ranges of interaction and,
in common with many experimental systems, exhibits a low density solid phase, which melts back
to the fluid phase upon compression. The theoretical approach is found to provide a qualitatively
correct picture of the phase diagram of our model system. © 2009 American Institute of Physics.
�doi:10.1063/1.3223999�

I. INTRODUCTION

The presence of liquid-liquid �LL� equilibrium in simple
fluids has drawn considerable attention in recent years1–3

mainly due to its connection with the existence of certain
thermodynamic, structural, and dynamic anomalies in liquid
water.4–6 The fact that there are significant regions of the
phase diagram in which an increase in temperature at con-
stant pressure is associated with a corresponding increase in
density, or in which diffusivity is enhanced when the system
is compressed, might be at first sight somewhat counterintui-
tive and has therefore motivated a remarkable research ef-
fort. Most of the systems that exhibit this peculiar behavior
are also known to present low density solid phases �with
coordination numbers ranging from two to five� less dense
than their liquid counterparts. Melting upon compression is a
common feature that has to be accounted for as well.

In this regard, simple models constitute a fundamental
aid that can allow to identify those essential features key to
the presence of the aforementioned anomalous behavior. Re-
cent research has focused on two main categories of models:
orientational and isotropic. The former class of models is
constructed bearing in mind the orientational character of the
hydrogen bond interaction or the strong directional character
of the covalent bonding characteristic in systems with low
density solid phases such as silica,7 germanium oxide,8 or
phosphorus.1 For this class of materials, a series of realistic
potentials has been employed in order to characterize their
anomalies via computer simulation.4–7,9,10 Useful as these
studies might be, a better insight can be gained from simpler
models which can be dealt with in some cases even analyti-
cally. Perhaps the precursor of the simple orientational mod-
els is the Bell-Lavis11 two-dimensional lattice model of wa-
ter, recently somewhat extended by Barbosa and
Henriques.12 In addition to these, the Mercedes Benz model

of water,13 the three-dimensional �3D� lattice gas model of
Roberts and Debenedetti,14 and the two-dimensional associ-
ating lattice gas model of Henriques and Barbosa15,16 must
also be mentioned.

The complexity of the above mentioned orientational
models can be further reduced. A weighted orientational av-
erage from these types of interactions would lead in most
cases to isotropic models with several interaction ranges.
And, since the pioneering work of Hemmer and Stell,17 it
turns out that the presence of two competing scales or inter-
action ranges has been found to lie at the heart of the exis-
tence of multiple phase transitions in otherwise “simple” flu-
ids. The ramp potential model proposed by Hemmer and
Stell regained attention when Jagla18 stressed the similarities
between its behavior and the anomalous properties of liquid
water. Since then, a good number of works have been de-
voted to the continuous ramp potential.19–24 Other simple
models with competing ranges of interaction, such as the
hard-sphere square shoulder-square well potential, have also
been shown to exhibit LL equilibria.25 But not only continu-
ous models can furnish an illustrative qualitative picture of
the phase behavior and various anomalies found in water and
related systems. Isotropic lattice gas models have proven to
be able to describe the qualitative features of these systems
rather accurately. One dimensional,26–28 two-dimensional,29

and 3D �Ref. 28� lattice gas models have been studied using
either mean field approaches, transfer matrix methods, and/or
computer simulation.

In this paper we will consider a two-dimensional lattice
gas model closely connected with the one studied in Ref. 28
in three dimensions. The model is characterized by two com-
peting interaction ranges �a nearest neighbor �NN� hard core
exclusion and a finite repulsive interaction on the next to
nearest sites�. This model is strongly related to the con-
tinuum shoulder model studied in Ref. 25 when the attractive
interactions are absent. Our study will focus on the reentrant
melting of the low density solid phase using both computer
simulation and lattice fundamental measure theory
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�LFMT�.30–34 We will see how the theoretical approach pro-
vides a qualitatively fairly approximate picture of our model
phase diagram.

The rest of the paper is sketched as follows. A brief
description of the model is introduced in Sec. II. Section III
is devoted to the simulation methodology. Details on the fi-
nite size scaling �FSS� analysis of the transitions are included
in Sec. IV. Section V describes the LFMT as applied to this
model, and finally our most significant results and conclu-
sions are presented in Sec. VI.

II. MODEL

We consider a two-dimensional model defined on a tri-
angular lattice. A given site of the lattice can be either empty
or occupied by one particle. The occupation of that site ex-
cludes the occupation of its six NN sites. In addition there is
a repulsive interaction between pairs of particles located in
pairs of sites that are next-to-nearest neighbors �NNNs�.

The potential energy of an acceptable configuration is
then written as

U = ��
�ij�

ninj , �1�

where �ij� indicates the set of NNN pairs of sites, the coor-
dinates nk are equal to zero for empty sites and equal to one
for occupied sites, and ��0.

In the limit of high temperature the interactions between
NNN become negligible and the system behaves as a hard
core lattice gas with NN exclusion. Such a model is the well
known hard hexagon model, which exhibits a continuous
order-disorder transition. The location of this transition was
obtained by Baxter,35,36 and it is believed to belong to the
same universality class as the three-state Potts model in two
dimensions.37 At high density the system adopts an ordered
structure �that will henceforth be referred to as T3� in which
the sites occupy preferentially one of the three sublattices of
the system �see Fig. 1�a�� with a triangular structure. The
density at close packing is 1/3 �one third of the sites are
occupied�.

In the low temperature and low pressure limit �equiva-
lently �→�� another lattice hard core model is met. In this
case an occupied site excludes the occupation of its NN and
NNN. Under these exclusion rules, at high density we find
again an ordered phase in which particles sit preferentially
on one of the four corresponding sublattices �see Fig. 1�b��.
The close packing density is in this case 1/4 �one fourth of
the sites are occupied�, and this ordered phase will hence-
forth be denoted as T4. Attending to the symmetry of the
order parameter and the dimensionality of the system, one
expects to find an order-disorder transition belonging to the
universality class of the four-state Potts model in two
dimensions.37 Theoretical analysis38 and simulation
results39,40 have shown that this transition is also continuous.

As in previous work by some of the authors,28 we are
interested in the phase transitions of the system at interme-
diate temperatures, where three phases �disordered, T4, and
T3� can appear.

III. SIMULATION METHODOLOGY

In order to obtain the phase diagram of the system we
have made use a number of Monte Carlo �MC� simulation
techniques. At high temperature we have used a flat-
histogram algorithm,24,28,41,42 inspired on the Wang–Landau
�WL� method,43,44 to compute the Helmholtz energy function
for all possible densities of the systems at fixed temperature
and volume. The same technique with some modifications
has also been used to determine the transition occurring at
low temperature and moderate density between a fluid �F�
disordered phase and a triangular T4 phase.

In addition, we have made use of the so-called Gibbs–
Duhem integration �GDI� technique45,46 to determine the
transition between the two ordered phases and to check the
consistency of the results.

In what follows we summarize these techniques.

A. Flat-histogram simulation at constant temperature

The flat histogram algorithm is divided in two parts.24,41

The first one is devoted to find a weighting function to
sample efficiently a prefixed range of densities at constant
temperature T and volume. In this part we make use of the
WL strategy. In the second part the actual sampling of the
system properties is carried out. We will comment later about
the specific details of each of these two steps. In the appli-
cation of the algorithm, two types of moves, denoted as
translation and insertion/deletion attempts, are considered.
Translational moves are carried out as follows. �i� A particle
is selected at random and removed from its position Ri in the

(b)(a)

FIG. 1. �a� Ordered structure at high temperature �large filled circles� and
close packing. The three sublattices are identified by circles with different
shading. Lines link NN sites. The distance between NNs in each sublattice is
�3, i.e., the distance to next nearest neighbors in the original lattice. �b� Low
density ordered structure appearing at low temperature �large filled circles�.
The four sublattices are identified by circles with different shading. Lines
link NN sites. The distance between NNs in each sublattice is 2, i.e., the
distance to third neighbors in the original lattice. One fourth of the sites
�large circles� of the lattice are occupied.
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system. �ii� A trial position Ri
t �which could even be the

previous one� is selected at random with equal probability
from those positions which are neither occupied nor ex-
cluded by the NN interaction. �iii� The new position is ac-
cepted with a probability given by the standard Metropolis
criterion.45,47

In the second type of MC move, a change in the number
of system particles N is attempted. First of all it is randomly
decided �with equal probabilities� whether to increase or de-
crease N. Let us first consider the most common case in
which N�1 for the removal attempts and N�Nmax−1 for
the insertion attempts, Nmax being the maximum number of
particles to be considered. If the number of particles is to be
reduced, an occupied position is selected at random and its
particle is either removed or left according to the acceptance
criteria. If an insertion is attempted, a nonexcluded position
�if there is any, otherwise the insertion attempt is directly
rejected� is selected to insert a particle, and as above the
acceptance criteria are applied.

In order to present the acceptance probabilities of these
attempts in the context of a flat histogram procedure, let us
first write the canonical configurational partition function,

Q�N,M,T� =
1

N! �
	RN


exp�− �U�RN�� =
MN

N!
�exp�− �U��0,

�2�

where 	RN
 is the full set of MN possible configurations of N
distinguishable particles over a lattice with M positions, and
��1 /kBT, with kB being Boltzmann’s constant. The factor
MN /N! is the contribution of the ideal lattice gas �system
without interactions� and �exp�−�U��0 accounts for the ex-
cess contribution to the configuration integral.

The sampling of different values of N can be carried out
by introducing a weight function ��N�. The probability of a
given configuration of the system then becomes

P�RN�M,T� � ��N�exp�− �U�RN�� . �3�

Integrating Eq. �3� over all the configurations of indistin-
guishable particles for a given value of N we get

P�N�M,T� � ��N�Q�N,M,T� . �4�

For the particular choice ��N�=exp�N�	�, with 	 being the
chemical potential, we obtain the probability of N in the
grand-canonical ensemble �GCE�. In order to perform an ef-
fective sampling of the thermodynamics of a system for a
wide range of densities, at fixed conditions of M and T, we
can choose a weighting function different to that defining the
GCE. In practice we look for a prescription � f�N� that pro-
duces a flat distribution P�N �M ,T�, i.e.,

� f�N� � 1/Q�N,M,T� . �5�

For practical purposes we introduce the function
F�N� defined by � f�N�=N ! exp�F�N�� /MN, i.e., F�N�

Fex�N ,M ,T� /kBT+K, with K being a constant, and
Fex�N ,M ,T� the excess contribution to the Helmholtz energy
function.

Taking into account the detailed balance condition45,47,48

and the procedure to insert or delete particles, the acceptance
probabilities of these MC moves must fulfill

A�RN+1�RN�
A�RN�RN+1�

= exp�− �
UN+1�
Npos�RN�

M

�exp�F�N + 1� − F�N�� , �6�

where Npos�RN� is the number of available positions in the
system �those that are not excluded due to hard core interac-
tions� and 
UN+1 is the change in the potential energy of the
system when introducing the new particle.

We have performed two types of calculation. At high
temperature the full range of possible number of particles
0�N�M /3 has been sampled. In this case we have intro-
duced transitions between the empty and the fully occupied
lattices. This is feasible because the total number of configu-
rations of both cases is known exactly, namely, one for the
empty lattice and three �corresponding to the filling of each
of the three sublattices� for the fully occupied lattice, and it
is straightforward to compute the acceptance probabilities for
these special transitions.

At low temperatures we found difficult to sample the
whole range of densities because the WL procedure showed
slow convergence. So in order to analyze the transition be-
tween the gas and the T4 phases we performed the simula-
tions in the range 0�N�M /4. In this case a cyclic scheme,
like that described above, is not feasible because at T�0
other configurations different to those of the perfect T4 struc-
ture are possible for N=M /4. Therefore in the insertion/
deletion sampling one directly rejects selected trials of
particle deletion when N=0 and of particle insertion when
N=M /4.

Technical details about how to compute the Helmholtz
energy function F�N ,M ,T� using flat-histogram techniques
can be found elsewhere.41,42,49 Here we will just mention the
basic ideas underlying the calculation. Simulations are di-
vided in two parts: equilibration and sampling. In the equili-
bration part F�N� is modified during the simulation run to
push the system to visit all the values of N in the selected
range. This equilibration is split in stages, each one run until
certain convergence criteria are satisfied. As the stages go on
the changes in F�N� are smaller. At the end of the equilibra-
tion one expects to have an appropriate estimation of F�N�.
Once the equilibration part is finished, the resulting function
F�N� is kept fixed and the sampling part of the simulation
starts. During this part one computes the probability of each
value of N �from which a refined result for the Helmholtz
energy function F�N ,M ,T� can be obtained� and different
properties of the system such as energy, energy fluctuation,
order parameter, etc. The sampling part is divided into blocks
in order to estimate error bars.

B. Gibbs–Duhem integration

As in previous works24,28 with systems exhibiting a simi-
lar phase behavior, we have employed GDI45,46 in the com-
putation of the phase diagram. In the present case GDI was
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used to determine the T3-T4 transition and to check the con-
sistency of the flat histogram MC calculations.

The analysis of the Helmholtz energy function in the
limit T→0 leads to a value of 	 /�=12 for the T3-T4 tran-
sition. After a number of short calculations we conclude that
such a value hardly varies for low temperatures.

GDI goes as follows. For fixed volume �M� systems, the
changes in the grand potential can be written as

d�− �pM� = Ud� − Nd��	� . �7�

At given � and 	 phase equilibrium exists if the pressure p is
equal in both phases. Now if one changes, for instance, �,
the change in �	 to keep phase equilibrium is given by

d��	� =

ū


�
d� , �8�

where ū�U /M, ��N /M is the density, and 
X denotes the
difference of the values of the property X in the two phases.
Equation �8�, or some variants of it, can be used to build up
numerical integration schemes to compute the phase equilib-
rium of discontinuous transitions. In practice we have per-
formed GDI using two different integration schemes. At low
temperature we have used

d	 = �	 −

ū


�
�dT , �9�

whereas for the intermediate temperatures, like those at
which the T3-T4 line is expected to meet the F-T4 line trans-
forming it into a T3-F line, we employed

d� =

�


ū
d��	� . �10�

IV. ANALYSIS OF THE PHASE TRANSITIONS

In order to locate the order-disorder phase transitions at
high and low temperatures we can use the results for
F�N ,M ,T� to obtain the probabilities in the GCE,

P�N�	,M,T� � exp	− �F�N,M,T� + �	N
 . �11�

Then we search for the value of the chemical potential
	c�M ,T� that maximizes the density fluctuations. For these
conditions we compute the average density �c�M ,T� and the
momenta of the distribution of densities mn�M ,T�
= ��
��n�M,T with 
�=�− ��c�M ,T�� for n=2, 3, and 4.

According to the definition of 	c�M ,T�, we must have
m3�M ,T�=0. The system size dependence of m2�M ,T� and
the ratio g4�M ,T��m4�M ,T� / �m2�M ,T��2 allow us to char-
acterize the �possible� phase transition.

In principle, given the symmetry of the model, one ex-
pects that at high temperature the phase transition will be
continuous and belong to the universality class of the three-
state Potts model in two dimensions,37 whereas at low tem-
perature the order-disorder �F-T4� transition is expected to
lie in the universality class of the four-state Potts model in
two dimensions.

The scaling behavior that standard FSS predicts48,50,51

goes as follows:

	c�L,T� 
 	c�T� + a	L−1/�, �12�

�c�L,T� 
 �c�T� + a�L1/�−d, �13�

m2�L,T� 
 am2L�/�−d, �14�

where we have used L �related with M by M =2L2� as the
system length. These scaling laws are expected to be satisfied
for large values of L. In these equations d is the dimension of
the lattice �d=2� and � and � are critical exponents, which
are expected to take the values37 �=5 /6, �=1 /3 for the F-T3
continuous transition and �=2 /3, �=2 /3 for the F-T4 con-
tinuous transition.

At intermediate temperatures the nature of the transitions
can change and eventually become first order. This fact can
be studied by analyzing the behavior of g4�L ,T� with the
system size. In general, for discontinuous transitions the
value of g4 goes to 1 as L→�, signaling the presence of two
well defined narrow peaks in the distribution probability of
the density.

V. THEORETICAL APPROACH

We have performed a theoretical analysis of this model
using LFMT.30–34 This theory is the lattice counterpart of
Rosenfeld’s fundamental measure theory,52 and its construc-
tion is based on the approach through zero-dimensional �0d�
cavities and dimensional crossovers of Tarazona and
Rosenfeld.53 In short this theory amounts to computing the
exact functional for a certain set of small graphs �the 0d
cavities� and then builds the simplest functional for the
whole lattice which provides the exact result for density pro-
files that are zero everywhere in the lattice except in a 0d
cavity. In essence this theory is the grand-canonical func-
tional version of Kikuchi’s cluster variation method54 in
Morita’s formulation.55

For short-range interacting lattice gases, the construction
of a LFMT density functional is particularly simple.33 Here
we will explain in detail how to apply it to the concrete
model we are studying. For a full account of the theory in all
its details and with all its properties the reader is referred to
Refs. 33 and 34.

The starting point of the theory is the choice of a set of
so-called maximal 0d cavities. 0d cavities are subgraphs of
the lattice such that every two particles placed on them nec-
essarily interact. They are “maximal” if adding a new node
to the graph breaks down this 0d requirement. If the interac-
tion is purely hard core exclusion, every 0d cavity can hold
just a single particle. If on top of that there is a soft interac-
tion, then more than one particle can be present in a 0d
cavity. For the particular model we are considering, in a tri-
angular lattice L, the set of maximal cavities is given by

�15�

The label r in the graphs denotes the position of the node
beside it �the remaining nodes of the graph are labeled ac-
cordingly�. Notice that cavities placed at different positions
in the triangular lattice are considered different.
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The second step is to complete this set by closing it with
respect to nonempty intersections, i.e., if two overlapping
cavities are in the set, so must be their intersection. The full
set of cavities resulting from this operation W can be de-
scribed as

W = �
i=1

4

Wi, �16�

where W4 is given by Eq. �15�, and similarly are defined Wi,
i=1,2 ,3, with

�17�

�18�

�19�

The density-functional form that LFMT prescribes for this
lattice gas is then F���=Fid���+Fex���, where

�Fid��� = �
r�L

��r��ln ��r� − 1� �20�

and33,34

�Fex��� = �
C�W

�− 	W�C,L���0�C� , �21�

with 	W�C ,L� as a combinatorial object known as the
Möbius function of the set W� 	L
,34,56 and �0�C� as the
excess free-energy density functional of the system when
constrained to be within the cavity C. �0�C� is therefore a
function of the density profile ��r� at the nodes of C alone.
We will return to its calculation in brief.

The Möbius coefficients 	W�C ,L� satisfy the recursion

	W�C,L� = − 1 − �
C�C��W

	W�C�,L� , �22�

with which it can be obtained for any cavity C of the set W.
It turns out that every cavity C�Wi is contained in the same
number of cavities C��W j with i� j. We shall denote this
number Mij. Then 	W�C ,L� is the same for all cavities of
the same set Wi. So by denoting

	W�C,L� = mi, ∀ C � Wi, �23�

recursion �22� becomes

mi = − 1 − �
j�i

Mijmj . �24�

It is easy to find that matrix M = �Mij� is

M =�
0 6 6 12

0 0 2 5

0 0 0 3

0 0 0 0
� . �25�

On the other hand, it follows from Eq. �22� that m4=−1. This
determines the remaining coefficients as m3=2, m2=0, and
m1=−1, and therefore the functional as

�Fex��� = �
C�W4

�0�C� − 2 �
C�W3

�0�C� + �
C�W1

�0�C� .

�26�

Let us now compute the functions �0�C� for all C�W.
Actually it is enough to obtain this function only for the
maximal cavities �those of W4� because any other cavity C
must be—by construction—a subgraph of one of the maxi-
mal cavities, and therefore �0�C� can just be obtained by
setting ��r�=0 at the nodes of the maximal cavity which do
not belong to C. On the other hand, by symmetry the func-
tional dependence of �0�C� on the densities at the nodes of
C will be the same for all the maximal cavities of this model.
In other words, the only function we need to obtain is

�27�

where the cavity nodes are labeled generically and should be
appropriately replaced by the nodes of the corresponding
cavity. Hence this is a function of �= ��1 ,�2 ,�3 ,�4�.

We start off by writing down the grand-canonical parti-
tion function for such a cavity, namely,

� = 1 + z + �z1z4, �28�

where ��e−�� �therefore we have 0���1 for any ��0�,
z=�izi denotes the total activity, and zi=e��	−Vext�i��, Vext�i�
representing any external field acting on node i. In obtaining
Eq. �28� we have made use of the fact that the cavity can
accommodate at most two particles, and this only if they
occupy nodes 1 and 4. In that case they interact through the
soft potential. From Eq. �28� we can obtain the densities as
�i= �zi /���� /�zi and the correlation between nodes 1 and 4
as �14= �z1z4 /���2� /�z1�z4. This yields

��1�4� = z1�4� + �z1z4, �29�

��2�3� = z2�3�, �30�

��14 = �z1z4. �31�

Adding up the equations for �i we obtain

�� = z + 2�z1z4 = � − 1 + ��14, �32�

where �=�i�i. Then

1

�
= 1 − � + �14. �33�

On the other hand, from Eqs. �29�–�31� it follows that z1�4�
=���1�4�−�14�, hence substituting this expressions in Eq.
�31� and using Eq. �33� we obtain
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���1 − �14���4 − �14� = �14�1 − � + �14� . �34�

The solution to this second-order equation for �14 is

�14��� =
1

2�1 − ��
	− 1 + � − ���1 + �4�

+ ��1 − � + ���1 + �4��2 + 4��1 − ���1�4
 . �35�

Finally we get �0 through a Legendre transform, i.e.,

�0��� = �
i=1

4

�i ln�zi/�i� − ln �

= � + �1 − ��ln�1 − � + �14� + �
i=1,4

�i ln�1 −
�14

�i
� .

�36�

As explained above, we obtain the �0 for the nonmaximal
cavities by setting �i=0 at the corresponding nodes. This
leads to

�0�C� = � + �1 − ��ln�1 − ��, � = �
i�C

�i �37�

for all C�W1�W2�W3.
Equations �20�, �26�, and �35�–�37� complete the pre-

scription for the density functional.

VI. RESULTS

A. Monte Carlo simulation results

The simulations were carried out using periodic bound-
ary conditions, on rectangular boxes of different sizes, built
by replicating in both directions the lattices shown in Fig.
1—which depict rectangular boxes containing M =2�L�L
sites �with L=6�. These system sizes are commensurate with
both T3 and T4 ordered structures.

1. F-T3 transition

For the location of the F-T3 transition we used the WL
cyclic sampling described in Sec. III A for values of ��
=0.00, 0.10, 0.20, 0.30, 0.40, 0.50, and 0.63. For each of
these values simulations were carried out for ten system
sizes: L=12, 18, 24, 30, 36, 42, 48, 54, and 60. We computed
the pseudocritical quantities �	c�L ,T�, �c�L ,T�, etc. and ex-
trapolated these data to the thermodynamic limit. To take
into account possible deviations from the scaling laws due to
the relatively small system sizes, we use the ad hoc fitting

Xc�L,T� = Xc�T� + �
k=1

m

axkL
−kbx, �38�

where Xc represent some physical property at the transition
point and bx is the critical exponent appearing in its corre-
sponding scaling law �cf. Eqs. �12� and �13��. The number m
is chosen to be either one or two according to a chi-square
test.57

We have found that for most values of �� the pseud-
ocritical chemical potentials 	c�L ,T� can be fitted for the
whole set of system sizes using a second-degree polynomial
�m=2 in Eq. �38��. In the particular case of ��=0.63 the
smallest system sizes �L=12, L=18� were discarded due to
the interference with the F-T4 transitions.

The results for the F-T3 transition are collected in Table
I �notice that the densities are expressed in terms of packing

TABLE I. Computed points for the F-T3 transition. Error bars are given in
brackets, in units of the last figure of the property, and correspond to a
confidence level of about 95%.

�� �	c �c

0.00 2.406�2� 0.8279�9�
0.10 3.152�2� 0.8430�10�
0.20 3.927�2� 0.8561�11�
0.30 4.728�3� 0.8671�6�
0.40 5.546�9� 0.8765�20�
0.50 6.393�3� 0.8840�6�
0.63 7.510�11� 0.892�4�

��
��
��
��
�
��
�

�

��
��
�

�
��
���
���

0.4 0.5 0.6 0.7 0.8 0.9 1.0
η

0.0

0.2

0.4

0.6

0.8

1.0

e-β
ε

F

T3

T4+T3

F+T4

T4

0.4 0.5 0.6 0.7 0.8 0.9 1.0
η

0.0

0.2

0.4

0.6

0.8

1.0

e-β
ε

F

T3

F+T3

T4+T3

F+T4

F+T4 T4

(b)

(a)

FIG. 2. Temperature-density phase diagram from �a� MC simulations and
�b� LFMT. The three phases are labeled F for the fluid and T3 and T4 for the
two solids. Coexistence regions are marked with two labels.
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fractions, i.e., �=3�N� /M� and plotted in Figs. 2�a�, 3, and 4.
The particular case ��=0 corresponds to the so-called hard
hexagon model, whose critical properties are known
exactly.35,36 The exact values are �	c=log��11+5�5� /2�
�2.4061 and �c=3�c=3�5−�5� /10�0.8292. A comparison
with the extrapolations given in Table I suggests that the
latter is quite accurate—although not perfect—in the estima-
tion of the exact values.

The results for �c���� and �	c���� are well represented
by the fits

�F-T3���� = 0.8280 + 0.1582�� − 0.0922����2, �39�

�	F-T3���� = 2.4056 + 7.3074�� + 1.6079����2

− 0.5478����3. �40�

2. F-T4 transition

As in the previous case, we have selected a number of
representative temperatures and performed simulations for
several system sizes. In most cases we considered the same
sizes �L=12,18, . . . ,60� as for the F-T3 transition. In addi-
tion to �	c�L ,T� and �c�L ,T� we also paid attention to the
quantities m2�L ,T� and g4�L ,T� because this transition ap-
pears to be discontinuous in some cases. In Fig. 5 we show,
as an example, simulation results for the F-T4 transition at
��=2 and different system sizes. At the transition both the
density of the system and the distribution of the particles in
the four sublattices change abruptly with the chemical poten-
tial.

The precise location of the multicritical point—where
the transition changes from continuous to discontinuous—is
a hard task due to the first order transition being quite weak.
In order to make an approximate estimation we focused on
the changes in g4�L ,T� with L and found that the change in
character of the transition occurs at about ���0.75�0.05.
Surprisingly, it is precisely at this temperature that the simu-
lation results are well represented by the scaling law �14�.

For ���0.75 we have estimated the critical properties
of the F-T4 line in the thermodynamic limit using the same
strategy as for the F-T3 case, employing the critical expo-
nents of the four-state Potts model in two dimensions. The
results are gathered in Table II. The results at low tempera-
ture show a good agreement with those reported by Zhang
and Deng:40 �	c=1.756 82�2� and �c=0.540�12�.

For ���0.75 the plot of the chemical potential as a
function of � shows a loop for the different system sizes
considered. This is a signature of a first order phase transi-
tion. The change in density is quite small and the transition is
rather weak. Taking this into account we have estimated the
location of the transitions by fitting the results for each simu-
lated temperature to equations of the form �38� with bx=1,
m=2. The properties considered were 	c�L ,T�, �c�L ,T�, and
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FIG. 3. Pressure-temperature phase diagram. The vertical axis represents the
reduced pressure and the horizontal axis represents the temperature in the
form e−��, with ��0 as the soft repulsion between NNN sites. Symbols are
the MC simulations and lines represent the predictions of the LFMT. The
shaded region is a set of values that cannot be reached by the LFMT because
the pressure jumps discontinuously at the T3-T4 transition.
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FIG. 4. Same as Fig. 3 but for the chemical potential 	. The shaded region
is a set of values that cannot be reached by the LFMT because the chemical
potential jumps discontinuously at the T3-T4 transition.
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FIG. 5. Simulation results for the F-T4 transition at ��=2.0. Continuous
lines correspond to the density at the T4 sublattice with the largest occu-
pancy �1 as a function of the chemical potential for different system sizes
�indicated in the legend�. The packing fraction of the system as a function of
the chemical potential for the system size L=60 is represented as a dashed
line. The vertical line marks the estimate of the chemical potential at the
transition.
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�c�L ,T�=�m2�L ,T�. Notice that, in general, for discontinu-
ous transitions limL→� m2�L ,T��0. Thus, in the thermody-
namic limit, the packing fractions of the two coexisting
phases are then obtained as

�F�T� = �c�T� − 
�c�T� , �41�

�T4�T� = �c�T� + 
�c�T� . �42�

The results for the discontinuous F-T4 transition are col-
lected in Table III.

B. Gibbs–Duhem integration

After a number of tests we analyzed the discontinuous
T3-T4 transitions and its continuation as F-T4 transition us-
ing GDI with lattices of size L=120. This relatively large
size was chosen since the end of this line at low values of �	
corresponds to the equilibrium between a low density fluid
and the T4 phase. This transition is relatively weak and be-
cause of this we found that for smaller values of L one of the
subsystems often undergoes a phase transition and both sub-
systems end up in the same phase with the corresponding
breakdown of the GDI scheme. The use of large simulation
boxes then makes us possible to reach values of �	 that
allowed us to check the consistency between GDI and WL
simulations. Technical details of the integration algorithm
can be found elsewhere.24,28 The integration steps and length
of the simulations were chosen after performing a number of
tests.

The GDI was divided in two parts. In the first part we
perform an integration following the scheme given in Eq.
�9�. The first point was chosen to be T�= ����−1=0.35, 	 /�

=12. The integration was carried out using a temperature
step of 
T�=0.025. At each step we run long simulations
�2�106 cycles, each cycle including M /3 insertion/deletion
attempts; averages are taken over the second half of the
simulation�. The integration was carried out up to T�=1.25
�or ��=0.80�, where we get coexistence for 	 /�
=11.947�0.001.

The second part of the integration was carried out using
the scheme given in Eq. �10�. The starting point was that
defined by the previous integration �T�=1.25, ��=0.80, �	
=9.558�. The integration step was then 
��	�=−0.020 and
the length of the simulations was about 1�106 cycles �for
each system and step, averaging over the second half of each
run�. As in the previous part, a number of additional simula-
tions with larger integration steps, smaller system sizes, and
shorter runs were carried out in order to test the integration
accuracy and to estimate error bars.

Simulations were launched to execute 201 integration
steps �to reach, in principle, a final value of �	=5.558�. We
observed that for this line GDI required both large systems
and precise estimates of the integrand in order to avoid the
collapse of the method before reaching the F-T4 discontinu-
ous equilibrium found with WL simulations. For instance,
using large simulations �precise integrands� with L=60,

��	�=−0.05, it was possible to get good estimates both for
the triple point T4-F-T3 and for the temperature at which the
density of phases F and T3 is equal at equilibrium, but
shortly after reaching the latter point the algorithm failed due
to the transition of one of the phases into the other. With L
=120 the integration stayed stable until reaching the ex-
pected final value of �	
5.56, which was found to be con-
sistent, within statistical uncertainty, with the value of the
F-T4 equilibrium obtained through WL simulation at ��
=0.63.

From the results obtained with GDI, together with those
previously reported on the F-T3 transition, we can estimate
the position of two of the special points in the phase dia-
gram, namely, the triple point T4-F-T3 and the point of
maximum temperature for the F-T4 equilibrium �at this point
both phases have the same density�. These results, together
with those of the change in the transition order of the F-T4
equilibrium, are collected in Table IV.

C. LFMT calculations

We shall now apply the density functional obtained in
Sec. V to determine the temperature-density phase diagram

TABLE II. Computed points for the continuous F-T4 transition. Error bars
are given in brackets, in units of the last figure of the property, and corre-
spond to a confidence level of about 95%.

�� �	c �c

1000 1.756�1� 0.560�2�
10 1.756�2� 0.560�2�

5 1.774�1� 0.562�2�
4 1.806�1� 0.565�2�
3 1.897�1� 0.573�2�
2 2.165�1� 0.596�2�
1.5 2.491�2� 0.619�2�
1.25 2.777�3� 0.637�4�
1.0 3.246�4� 0.658�4�
0.9 3.541�3� 0.676�5�
0.8 3.950�2� 0.688�4�
0.75 4.230�2� 0.695�3�

TABLE III. Computed points for the discontinuous F-T4 transition. Error
bars are given between parentheses, in units of the last figure of the property,
and correspond to a confidence level of about 95%.

�� 0.70 0.65 0.63

�	F-T4 4.61�2� 5.18�2� 5.59�4�
�F 0.705�2� 0.717�2� 0.724�2�
�T4 0.718�2� 0.733�2� 0.737�2�

TABLE IV. Singular points of the phase diagram: TP stands for triple point,
HT for high temperature end point, and DC for the change from discontinu-
ous to continuous behavior of the fluid-T4 transition. Error bars are esti-
mated by comparing results from different GDI trajectories.

Point TP �T4-F-T3� HT �F-T4� DC �F-T4�

�� 0.660�2� 0.619�1� �0.75
�	 7.78�2� 6.35�2� �4.0
�F 0.892�5� 0.745�1� �0.69
�T3 0.892�5� ¯ ¯

�T4 0.7491�1� 0.745�1� �0.69
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of this fluid. To this purpose we have to study the three
phases involved: The uniform fluid and the two solid lattices
�T3 and T4, cf. Fig. 1�.

1. Uniform fluid

If every site has the same average occupancy � �hence a
packing fraction �=3��, the free energy per unit volume �in
kBT units� will be

� = � ln � + �1 − ��ln�1 − �� − 4�1 − 3��ln�1 − 3��

+ 3�1 − 4��ln�1 − 4� + �14� + 6� ln�1 −
�14

�
� , �43�

where �14=�14�� ,� ,� ,�� is

�14 =
1

2�1 − ��
	2�2 − ��� − 1

+ �1 − 4�2 − ��� + 4�4 − 3���2
 . �44�

The pressure can then be obtained as

�p = �2���/��
��

= ln� �1 − 3��4

�1 − 4� + �14�3�1 − ��� �45�

and the chemical potential is given by �	= ��+�p� /�.

2. T3 solid phase

The T3 solid occupies one of the three sublattices shown
in Fig. 1�a�. From this figure it is clear that the density profile
will take one out of two values: The sites of the occupied
sublattice—marked with large circles in Fig. 1�a�—will have
a higher density �A, whereas the remaining ones will have a
lower density �B �by symmetry this value is the same for all
those sites�. The packing fraction will then be �=�A+2�B.

If we regard the lattice as a tiling of rhombi, we can
realize that there are three different kinds of them: Those
with �A at positions 1 and 4 and �B at positions 2 and 3, those
with �A only at position 2, and those with �A only at position
3. There is the same number of each kind. The contribution
of the two latter to the rhombic cavities will be the same but
different from the contribution of the former. Thus

�
C�W4

�0�C�
V

= �0��A,�B,�B,�A� + 2�0��B,�A,�B,�B� ,

�46�

with �0��� given by Eq. �36�. As for the triangular cavities,
�i�i=�A+2�B=� for any of them, so

�
C�W3

�0�C�
V

= 2� + 2�1 − ��ln�1 − �� . �47�

Dimers do not contribute to the functional, so the last con-
tribution will be

�
C�W1

�0�C�
V

=
�

3
+

1

3
�1 − �A�ln�1 − �A�

+
2

3
�1 − �B�ln�1 − �B� . �48�

Putting all together and adding the ideal part the result is

���B;�� = 1
3 �1 − � + 2�B�ln�1 − � + 2�B�

+ 2
3 �1 − �B�ln�1 − �B� − 4�1 − ��ln�1 − ��

+ �1 − 2� + 2�B�ln�1 − 2� + 2�B + �1�

+ 2�1 − � − �B�ln�1 − � − �B + �2� + �� − 2�B�

�	2 ln�� − 2�B − �1� − 5
3 ln�� − 2�B�


+ 2�B	2 ln��B − �2� − 5
3 ln �B
 , �49�

where we have eliminated �A=�−2�B, and

�1 = �14��A,�B,�B,�A� , �50�

�2 = �14��B,�A,�B,�B� . �51�

The free energy as a function of � is obtained by mini-
mizing the function �49� with respect to �B �always taking
the solution �B�� /3�. For ���t=0.5086. . . �see below�
there is a first order transition from a homogeneous fluid to
the T3 solid �see Fig. 2�b��. In the limit �=1 where the
model becomes identical to the hard hexagon model, we find
a wide first order transition. This model has been previously
solved within the LFMT approach in Ref. 32. LFMT is a
mean-field-like theory, and therefore all second order transi-
tions have a parabolic behavior of the order parameter—
corresponding to a critical exponent �=1 /2. The exponent of
the hard hexagon model �like that of the three-state Potts
model� is35,36 �=1 /9. Looking at Fig. 7 of Ref. 32 one must
admit that a discontinuous function is a better approximation
to the behavior of the order parameter than a parabolic,
mean-field one. So although not quite satisfying, the result is
quantitatively not too inaccurate. This also reflects in the fact
that the pressure and chemical potential at the transition are
rather close to the exact value, and it remains so for all �t

���1, as Figs. 3 and 4 show.

3. T4 solid phase

The T4 solid occupies one of the four sublattices shown
in Fig. 1�b�. Again the density profile will take either the
value �A at the sites of the occupied sublattice—marked with
large circles in Fig. 1�b�—or the value �B at the remaining
sites �the same for all of them by symmetry�. The packing
fraction will now be �=�A+3�B.

As a tiling of rhombi the lattice contains four kinds of
them, each with an A site at one of the four positions. There
is the same amount of each type. Thus

�
C�W4

�0�C�
V

=
3

2
�0��A,�B,�B,�B� +

3

2
�0��B,�A,�B,�B� .

�52�

As for the triangles, one fourth of them have an A site and
two B sites, and three fourths have three B sites, so

124506-9 Two-dimensional ramp model J. Chem. Phys. 131, 124506 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



�
C�W3

�0�C�
V

=
�A + 2�B

2
+

1

2
�1 − �A − 2�B�ln�1 − �A − 2�B�

+
3

2
�B +

3

2
�1 − 3�B�ln�1 − 3�B� . �53�

Finally, the contribution of the pointlike cavities �those
of W1� is

�
C�W1

�0�C�
V

=
�

4
+

1

4
�1 − �A�ln�1 − �A� +

3

4
�1 − �B�ln�1 − �B�

�54�

because 1/4 of the sites are of type A and 3/4 of type B.
Putting all together and adding the ideal part the result is

���B;�� =
3 − 4�

2
�ln�1 −

4�

3
+ �1� + ln�1 −

4�

3
+ �2�� +

4� − 9�B

2
ln�4�

3
− 3�B − �1�

+
3�B

2
	ln��B − �1� + 2 ln��B − �2�
 +

3

4
�1 − �B�ln�1 − �B� − �1 − 3�B�ln�1 − 3�B� −

15

4
�B ln �B

− 3�1 −
4�

3
+ �B�ln�1 −

4�

3
+ �B� +

1

4
�1 −

4�

3
+ 3�B�ln�1 −

4�

3
+ 3�B� −

5

4
�4�

3
− 3�B�ln�4�

3
− 3�B� , �55�

where we have eliminated �A=�−3�B, and

�1 = �14��A,�B,�B,�B� , �56�

�2 = �14��B,�A,�B,�B� . �57�

As for T3, the free energy of the equilibrium phase is
obtained by minimization of this function with respect to �B

�always choosing the solution �B�� /4�. In the limit �=0
the model is equivalent to a lattice gas with NNN exclusion.
In this limit we obtain a wide first order transition from a
uniform fluid to a T4 solid, which again is found to be con-
tinuous in the simulations. The values of the pressure and
chemical potential for this transition are nevertheless rather
accurately predicted �see Figs. 3 and 4�, so the same consid-
erations as for the F-T3 transition in the hard hexagon ��
=1� limit hold here. We find a first order F-T4 transition all
the way up to �c=0.5403. . ., where it coalesces to an end
point �at �c=0.7405. . .�. It is to be noticed that this point is
obtained with high accuracy �simulations yield �c�0.538
and �c�0.745; see Table IV�, and that simulations also find
a first order F-T4 transition near this point �see Fig. 2�.

When �=0 the model has a close packing at �=3 /4;
however, for any ��0 this limit can be crossed, although at
a very high energetic cost. Once this cost is paid, the system
greatly diminishes its entropy by reordering itself in a T3
structure. Hence the transition that is found, for all � up to
not too far from �t, between a close-packed T4 solid and a
nearly closed-packed T3 solid, which is also observed in the
simulations �see Fig. 2�. What happens with the free energy
at this T4-T3 transition is very peculiar and it is illustrated in
Fig. 6. The derivative of the free energy per unit volume �in
kBT units� with respect to the packing fraction is discontinu-
ous at �=3 /4. The free energy of the T4 phase is concave
beyond this point, so there is a T4-T3 coexistence, but it does
not satisfy the standard conditions of phase equilibria. As a
matter of fact, both the pressure and the chemical potential

jump discontinuously at this point. This creates a “forbid-
den” region in the pressure temperature and the chemical
potential temperature, which can be observed in Figs. 3 and
4. Notice that this behavior is likely due to the approximate
character of the theory.

At the value �t there is a F-T3-T4 triple point, which the
theory predicts very close to the value obtained in the simu-
lations, �t�0.517 �see Table IV�.

In the range �t����c a reentrant T4-F transition is
found before the F-T3 transition occurs. This reentrant be-
havior also appears in the simulations, although the coexist-
ence region is wider because the F-T3 transition is continu-
ous �see Fig. 2�.

VII. DISCUSSION

The main result of this paper is the phase diagram of the
model shown in Figs. 2–4. Both at low and high tempera-
tures a fluid system under compression shows a freezing
transition. At high temperature the solid phase at equilibrium
with the fluid is a high density �T3� phase, whereas at low
temperature a low density solid �T4� appears. The F-T3 tran-
sition can be understood in terms of entropic effects, whereas
the stability of the T4 phase with respect to the fluid is due to
the lower energy of the T4 phase. In both limits, T→0 and
T→�, the simulations found continuous fluid-solid transi-
tions as expected. At intermediate temperature the most re-
markable features of the phase diagram appear; in a narrow
range of temperatures �see Figs. 2 and 3� the system exhibits
reentrant melting, when increasing the pressure the fluid
freezes into a T4 solid phase, this T4 phase under further
compression, melts back to the fluid phase; and finally an
additional increase in pressure produces a transition from the
fluid to the T3 solid phase. In addition, simulation results
show that the F-T4 transition exhibits a multicritical point
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close to the reentrant behavior range and becomes a discon-
tinuous transition in the intermediate temperature range,
where the reentrant melting appears.

From Figs. 2–4, we see that the theoretical results for the
equilibrium between the ordered phases are in reasonably
good agreement with the simulation. The theoretical estima-
tions of the triple point and the high temperature end point of
the F-T4 equilibrium are also well described. On the other
hand the LFMT description of the order-disorder transitions,
both at low and high temperatures, is less accurate. The
theory predicts first order transitions whereas they are con-
tinuous in both limits. We have argued that this is so because
the behavior of the order parameter is very sharp �the critical
exponent �=1 /9�, so much that a discontinuous function is a
better approximation to it than the simple parabolic behavior
predicted by any mean-field-like theory �like this one�. The
theory can in principle be refined by considering larger
“maximal cavities.” Although it would produce a far more
complicated theory than the one presented here, and it is
expected that its accuracy would increase, it is doubtful that
the order of the transition would be corrected. No matter how
much we complicate the theory, it does not cure its mean-
field behavior near the transitions. This is also the reason
why first order transitions are described much better.

In favor of this argument is the fact that, overall, the
agreement between simulation and theoretical transition lines
in the planes 	-T and p-T is rather good.

When comparing the phase diagram for the two-
dimensional system on the triangular lattice with that of the
3D system28 �cf. Fig. 7� in a simple cubic lattice we find a
couple of qualitative differences. The first one concerns the
nature of the order-disorder transition at low temperature,

which is continuous in two dimensions and discontinuous in
three dimensions. This difference can be understood in terms
of the different dimensionality and can be related with the
critical behavior of Potts models37 in two and three dimen-
sions.

The second relevant difference arises when comparing
the transitions between the two ordered phases. In two di-
mensions, at solid-solid equilibrium the high density solid is
nearly close packed for a wide range of temperatures,
whereas this is not the case for its 3D counterpart even at the
lowest temperatures. This difference can be explained as fol-
lows. At low temperature phase equilibrium is essentially
controlled by the condition of minimum energy. The energy
per unit volume of the closed packed configuration in two
dimensions is ū�=U /M�=3. At slightly lower � there are
vacancies. The way in which they minimize the energy is by
not being NNs in the solid lattice �i.e., next-nearest neigh-
bors in the underlying lattice�. This way each vacancy re-
duces the energy by 6�. Thus, for 2 /3���1, ū����=2�
−1. If we consider, at the same density, a system separated
into a close-packed T3 and a T4 phase, then NT3+NT4=N
and 3NT3+4NT4=M, and the energy of this system will be
U=3�NT3. Hence ū����=4�−3. Since 4�−3�2�−1 for all
��1, then the phase separated system is energetically fa-
vored. The same argument for the 3D model of Høye et al.28

yields the same energy, ū����=6�−3 �for 3 /4���1� in
both cases, so in the 3D system the entropy does play a role
in defining the density of the high density solid, and the
number of vacancies does not go to zero when approaching
T=0.

The similarity between the phase diagrams in two and
three dimensions is remarkable, though. Peculiar features,
like the reentrant fluid phase or the vertical line at the closest
packing of the loose solid when it coexists with the dense
one, appear in both cases.

Much to our surprise, we have realized that the LFMT
for the 3D model is far more complicated than that of the
two-dimensional one. The reason is that the soft repulsion at
NNN allows for maximal cavities with up to four particles at
the same time. This not only introduces a much larger set of
cavities to elaborate the density functional, but also the cor-
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FIG. 6. LFMT result for the free energy �in kBT units� per unit volume as a
function of the packing fraction �, for �=e−��=0.3679, below the triple
point. Dotted line represents the free energy of the uniform fluid; solid line
represents that of the T4 phase, and dashed line represents that of the T3
phase. The filled square represents the bifurcation point F-T3 and the filled
circle represents the bifurcation point T3-T4. Notice the discontinuity of the
derivative of the free energy at �=0.75, the close packing of the NNN
exclusion lattice gas. For ��0.75 the free energy of the T4 phase is con-
cave, so T4-T3 coexistence always occurs with a T4 phase at �=0.75, and
both the chemical potential and the pressure jump discontinuously at this
transition.
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FIG. 7. Temperature-density phase diagram for the 3D counterpart of the
model discussed in this article on a simple cubic lattice.
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responding expressions for the �0 functions are very cum-
bersome and hard to handle. On the other hand, given the
similarity between the phase diagrams, it seems that the
physics of the model is already well captured by the two-
dimensional version.
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