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This article, the first of a series of two, describes the formulation of Rosenfeld’s fundamental
measure theory for a mixture of parallel hard cubes, a model recently introduced to study the
demixing transition for additive hard core potentials. Special emphasis is put on the good
performance of the functional when reducing the dimensionality of the system, a necessary feature
to give reasonable results in highly inhomogeneous situations. This property allows for an extremely
simple formulation of the theory in arbitrary dimensions. In a subsequent article we will describe the
properties of the mixture as they are predicted by the theory, in particular the demixing in presence
of the freezing transition. €1997 American Institute of Physid$0021-960807)50240-§

I. INTRODUCTION knowledge of the DCF of any such system makes it neces-
sary to make further empirical hypothesis about its shape
During the past decade the major aim of density funcelse make use of truncated expansions into spherical
tional theory(DFT) was producing a reasonable functional to harmonicsi® As a consequence of this one cannot trust that
describe inhomogeneous phases of fluids out of the availabl@e resulting structure of the functional be in any way related
knowledge of the bulk fluid phasenainly the equation of g that of the unknown exact one, and furthermore, system-
state and the direct correlation function, henceforth RCF atic refinements of the functional are out of question. On the
The theorie; e!aborated in this_ spirit became very successfgner hand, the very philosophy of using only limited bulk
in the description of the freezing of the hard spheiidS)  fjig data to construct a functional able to describe the HS
fluid'? (by then the favorite test to settle the merits of de”SitVfreezing has been questiortédly showing that the location
funqtiongl theorie);and they also pfo}’ideq accurate densityof the solid—fluid coexistence line in this system is rather
profiles in rather inhomogeneous situations, such as thoSggensitive to the details of the theory. This argument is sup-
created by _th_e presence of a hard v??gArr_ned with such ported by the fact that these theories are unable to accurately
good descriptions of the HS fiuid, the liquid theory commu- ocate the coexistence line for soft repulsive potentiafsy
ni_ty began to use them as a refergnce o deal pgrtur_bative hich the details become more relevant. As a matter of fact,
with more realistic p(_)_tentlals, mamly those_ arising in thethe solid phase resulting from these theories has unphysical
theory of charge-stabilized colloidal suspensidas, well as OoropertieS' to mention only wh: (1) if vacancies are in-
to extend the formalism to nonspherical bodies in order t Forporated to the theory they are predicted to have a negative

study mesophases in liquid crystal¥hese studies were re- egensity, and2) the free energy of the solid phase does not

warded with the accurate description of phase diagrams of, X :
these fluids and even with the uncovering of weird phas iverge at the closest packing density—and therefore denser
olids are allowed!

transitions(such as the recently found dense-expanded solid . o
Parallel to the development of these “classical” func-

transition®’ arising from the interplay between the attractive _ . .
and repulsive parts of the potential, much as in the Vapor_nonals another approach to this problem was maturing—the

liquid phase transition so-called fundamental measure thedfy(FMT); but this

In spite of this unquestionable success, these theories af@'y version of the theory, despite its noteable success for
not free from severe criticism, their major defect being their®ulk and confined fluids, could not address the freezing prob-
empirical character. All of them are built upon the evaluationl€m because of its absurd prediction of an infinitely stable
of the free energy of the bulk fluid at an either local perfect solid at any density. As a result, this first FMT could
(weighted density approximatiohd or averagedeffective ~ NOt compete at the time with the classical functionals, since
liquid approximations? weighted density. The weight is freezing was then considered the standard reference test for
chosen, by different procedures, in such a way that the funcany DFT. Nevertheless, the theory was appealing for several
tional yields the bulk fluid DCE,which thus becomes a fun- reasons. First of all, its philosophy was closer to a “first
damental ingredient of these theories. There is no reason @inciples” theory than any of the classical functionals, be-
proceed in this way other than the intuitive idea that verycause this theory aimed to build a density functional out of
inhomogeneous density profiles need to be smoothed out lihe geometry of the particles, supplemented with some gen-
the convolution with a function with nonzero values within a eral assumptions; second, it yielded the Percus—Y efRtk
region of about the size of the interaction potential rangePCF as aresult rather than incorporating it as an input of
before they enter the calculatiohsThe situation is even the theory, as any classical theory does; and third, its predic-
worse in the case of nonspherical bodies because the lack tbns for the bulk phase coincide with those of the scaled
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particle theory:®'” of which FMT is a kind of refined ver- led to a reformulation of the DFT for HS in which the 0D
sion devised to deal with inhomogeneous phases. limit plays a crucial role?’

The origin of FMT can be traced back to a remarkable  For the system of PHC the study of the various dimen-
paper by Percd8 in which he tries to extrapolate from the sional crossovers has yielded a similar improvement of the
knowledge of the exact 1D function®\This functional is in ~ functionaf® (although, as we will show here, it was already
fact a weighted density functional, but with two important implicit in the original formulation of the functionallt turns
differences with respect to the classical ong@sit depends out that this system performs in this respect much better than
on two independent weighted densities, instead of one, anéhe HS, and in fact, as we will show, the generating character
(||) the Weights are related to geometric Characteri$‘[‘im|_ of the OD limit in the formulation of the theory prompts here
ume” and “surface’) of onesingle particle, rather than to in its clearest way. Thus in some sense, formulation of the
those of the pair potential. But Percus’ work is “classical” FMT for PHC seems to be simpler than for any other con-
in spirit because he then speculates how to supplement ¢ivable model. _ _ _ _
functional built upon an arbitrary number of weighted den- _ This is the first article of a series of two, in which we
sities with the available knowledge of the bulk fluid. Thus Will give a detailed description of the formulation of FMT
the first actual formulation of FMT is due to Rosenféld, for PHC, including considerations on the various dimen-
who by means of the low density limit of the functional sional crossovers, which eventually lead to a very simple

identified a set of such geometric “measures” with which to general formulahon. of the .theory in D dimensions. In the
define the weighted densities, and then he determined th gcond article we will describe part of the phenomenology of

final shape of the functional by resorting to scaled particlet is system as it comes out of the present FMT, in particular

theory. It turned out that the choice of those measures w the behavior of a binary mixture of PHC in the presence of

not unique?® although the alternative formulation led to anafsreezmg. The present article is organized as follows. In Sec.
. . 1 Il the general formulation of FMT is outlined, and then ap-
equivalent functionaf’

E thouah a fund tal functional | lied in Sec. Il to obtain a functional for a mixture of PHC
ven though a fundamental measure functional can aisy 1, 2, and 3 dimensions. In Sec. IV we discuss the predic-
be formally constructed from aspproximatedecomposition

tions of the theory for the uniform fluid. In Sec. V we study

of the Mayer function as a linear combination of one—partlcle,[he dimensional crossovers of the functional and see how

measure%, the gccqmphshment of this decomppsmon IS anthey lead to the general D-dimensional formulation; finally
important physical ingredient of the theory, with specially we draw some conclusions in Sec. VI.
marked effects for nonisotropic liquid crystals. However, the

exact decomposition of the Mayer function, by using the

Gauss—Bonnet t.he_ore?ﬁ,23 is not always possible, and this || o7 |NE OF ROSENFELD'S FUNDAMENTAL

is one of the limitations of the theory in its present formula- \EASURE THEORY

tion. Apart from HS, another system to which FMT can be

applied is the fluid of parallel hard cubHC).>* One of the The basic assumption of the FMT is to postulate the
advantages of FMT is that it can be readily formulated forfollowing form for the excessover ideal gas contribution
mixtures as easily as for single-component fluids, and thigtelmholtz free-energy functionaf:

has permitted, for instance, study of the demixing of a binary

mixture of PHG* which was reported to occur in Monte ,BFex[{pi(r)}]:f dr ®({n,(r)}), )
Carlo simulations on a lattic®.But the most serious limita-

tion of the original formulation of FMT for HS was its being (8 *=KkgT, Boltzmann’s constant times the temperature
unable to account for the solid phase, and it was especiallhere the free-energy densiyis a function of a certain set
serious because the main aim of the theory was to descrif® Weighted densities

inhomogeneous phases. This defect has recently been “re-

paired” and its detection has hit on a subtle point which has ~ Na(r)=2> J pi(r )™ (r—r")dr’ v

led to the concept adimensional crossovéf3which is the '

property any system has of reducing its dimensionality whetipi(r) denotes the density function of specigandD is the
particles are constrained to move in a lower dimensiona$patial dimensioh The weighted densities, are labeled so
space. This imposes strong restrictions on the functionalthat their dimensions arfn,]= (volumef* 2P, and they
which they must fulfill if they are to describe highly inho- may have any tensor charactecalar, vector,). Further-
mogeneous situation®mamely, narrow layers, slits, or even more, in the original FMT the weights are assigned a geo-
pores. In fact, the ability of the functional to reduce to the Metric meaning as “fundamental measures” of the hard bod-
exact 0D ||m|f_|-3_|e, a Cavity ho|d|ng one partic|e at the ies, and they are required to fUlfI”, in the uniform fluid ||m|t,
most—is strongly related to its ability to describe a sensible

solid phasé® It turned out that the classical functionals  Nu=ka>, PR, 3
had a well-defined 0D limit—although not the exact one— '

while the original FMT diverged to minus infinity; hence its where theRi(“”s are geometric invariants of the bo¢iy D
prediction of the perfect solid being always stable. Further=3, for instanceR(®=1, R{")=mean radiusR{? =surface,
considerations of this dimensional crossover property havand Ri(3)=volume of bodyi; the normalizing constants,,
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are usually chosen so thag= xp=1). Thereforea must be
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Equation(9) is the key for the feasibility of the FMT as

in the range 0,1,.D,, and consequently there is a finite set of applied to a given hard-body fluid. If one is able to determine

weighted densities.

Now, to determine the functiof, we can realize that its
dimensions are (volume!, so it must consist of a linear
combination of(scalaj terms, all of them with this same

a decomposition like that in terms of one-particle weights,
then, as we will see, the rest of the construction goes
straightforward. However, such a decompositiaith a fi-

nite number of termssdoes not exist for any molecular shape

dimensions. On the other hand, the existence of the viriabr even any spatial dimensiéf?3 For instance, in spite that

expansion for the free energy implies thét must be an

it can be found for HS$® amazingly for hard diskgtwo-

analytic function of thens; therefore, these terms can only dimensional HEan infinity of terms is need€edEq. (9) must

be made out of products af,s with a total dimension of
(volume™

density,np .
sion:

In summary® will have the following expres-

MU

A (np)n,....n, , 4)
= IR ORI B R

Osaq,..., asD-1

then be replaced by an approximate finite decomposition in

! and the coefficients of their linear combination order to circumvent the difficulty].
will thus be analytical functions of the only dimensionless

Equations(7) and (9) already show a limitation of hy-
pothesis(1), namely that the DCK7) has exactly the range
of the Mayer function, something which is definitely wrong,
although it is a good approximaticf.

There remains to be determined the shape of the func-
tionsAC,l ak(nD) in expression(4). This can be achieved in

the following way. First of all, for the uniform fluid, the

where it is implicitly assumed that vector or tensor densitie£Xcess grand Pegte”“m can be expressed in terms of the ex-
can only appear within the product in a scalar combination C€SS pressur&®™=P— " ny, as

Now we have to determine the weight functiong” .

Q%= —P®=(B"1n,—P)V,

For that we can make use of the definition of the direct

correlation functional,

SFpi(N}]

S S o) ©

and apply it to the excess free-energy functiofialto find

)

wa(

2

(rrr)w_(a)(r _ r/r)
an,an, :

r'). (6)

In the uniform fluid limit this functional reduces to the DCF
of the mixture; thus

cij(r,r')=— dr”

2

_ (@) (y)
cii(r)= w; '@ w: " (r), 7
i(N==2 Z o el ()
where® denotes the convolution
wf‘”@w}”(r)zj dr' of*(r")@w|”(r—r"). )

whereV is the volume; but this potential can also be ex-
pressed in terms of the excess free energy and the chemical
potentials ) as (N; denotes the number of particles of
species)

WXENM

aF
@ an

—Fe— 2 Pl _Fex 2 n

From these two equations follows an expressionHor

<9CI>
@ an

ap

BP=ny— <D+E n (10)

Second, we can impose the scaled particle condftith
/.L?X’\“Pvi when Vi—>oc, (11)

V; being the volume of the particle aftlthe pressure. This
relation arises from the fact that{™ expresses the work
needed to insert a particle of specigsto the system. Now,

Being the DCF a scalar function, an inner product must apsince the excess chemical potential is giver{$ge Eq(3)]
pear in the right-hand side of the above equation whenever

the weights are not scaldand this will be implicitly as-
sumed. Now, in the low density limit, the DCF reduces to

ex — —K R(vt 12
z9p| ; (12

fi;(r), the Mayer function of the system. Thus according tothe leading term in thyi_m limit will be [see Eq.(3)]

Eq. (7) we will have

fij(r)= ED¢Mw@®@Wm, (9)
a+y:

P

B~ V (13

A comparison with Eq(11) immediately yields the follow-

¢, being some constants which allow us to freely choosdng equation:

the normalization of the weights. The constraint y=D in

Eq. (9) arises from our assumption on the dimensions of the
»“®w{®~(r) are the only dimensionless combina-
tions of two weights, and thus the only ones that can appeanotice thatg~*

N,:

in the expression of;; .

PcD
’8_(9

- (14

ny reduces to the ideal gas pressure for the
uniform fluid). Let us remark that this is only an approximate
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relationship which has been derived within the scaled parEg. (4) also contains functionals which are regular in the 0D
ticle approximation. Its introduction justifies posteriorithe  limit. Moreover, consideration of this limit has eventually
seemingly arbitrary choice of a finite set of weighted densided to an alternative formulation of the HS functional, under
ties: Since the scale particle approximation is being used, weompletely different assumptioR$.In the next section we
should expect to recover the expression for the free energgpply the original simplest scheme to a mixture of PHC.
these approximate theory yields, and this expression only

involves the combinations of densities given in E8).1%%’

Equations(10) and (14) imply lll. FREE-ENERGY FUNCTIONAL OF A MIXTURE OF
e P PARALLEL HARD CUBES IN ONE, TWO, AND
_CD+2 n, — +nNg=—0. (15) THREE DIMENSIONS
a ang, anp

In this section we are going to apply the FMT formalism
A simple substitution of Eq(4) into (15) leads to a system to obtain a functional for PHC i =2 and 3. As to the
of ordinary differential equations for the functions =1 case, PHC on a line are simply hard rods. In this case the
Aa, ..« (Np), Which can be solved up to some integrationsystem is thus indistinguishable from the 1D HS fluid, and
constants. therefore, as we have already discussed, the FMT yields the
The last step, i.e., the determination of the integrationexact result. No further comments are then needed.
constants, is achieved by requiring the DCF derived from th

. . . . D=2
free-energy functional to have the right low density expan-
sion, namely, The Mayer function of two parallel hard squares is given
k by
Cij = ¢ +§pk@? o RN (16) fij(r)==0(0;—|x})O(aij—1yl), (19

O(u) being Heaviside's step functiop® (u=0)=1, and
where, as usudf, o—o denotes a Mayer function for ®(u<0)=0], andaj;=(0;+ 7;)/2, with o; the edge length
of a square of specigs The Fourier transform of one of the

i ]
articlesi andj, and a black dot means integration over the . ) .
P : 9 step functions entering E@19) can be written as

corresponding spatial variable.

When this scheme is applied to one-dimensional HS, i.e., % i 2 .
hard rods?? it reproduces the exact restitwhich is in fact __dx€CO (o —|x) = sin gk
what motivates assumptiofl),*® and similar ones underly-
ing different density functional theoriéslts application to =}i(k)21(k)+}j(k)2i(k), (20)

three-dimensional HS yields the PY D&Fput expressed in

a geometrically meaningful way: where
R 2 o ~ o
cij(N =[x+ xR (r)+ x?s;(r) fi(k=1 sin5 k G(kj=cos= k, (21)
4B\ y . .
XV (0] (), (17 which are the Fourier transforms of the two measures

whereV;;(r), S;(r), Rij(r), andf;;(r) are, respectively, the 1
volume, surface, mean radius, and minus the indicator Ti(X):®(E— |x|), L(xX)== 5( Ji_ |x|). (22)
(Mayer function of the overlap region of two HS of radif; 2 212

ando; . Notice that the DCF is an outcome of the_theory andaccording to this, the Mayer functiofL9) can be written as
that, since we actually have the density functional itself,

higher order DCFs can be computed as ell. —fij(N=020[”(N+ 0”0 0?1+ oV o)
The application of FMT to hard diskS,as commented

—_w (1)

above, is only approximate, but it nevertheless produces an Wi @w(n), 23
expression for the DCF similar to that for HS: where

¢ (N=[xV+xPs;(N+x?Vvy(n] fy(r), (19 o (=5 8(Y), (249
where the symbols are the two-dimensional counterparts of w3 (r)=(z,(x)7(y),7(X)Zi(Y)), (24b)
those in Eq(17). This expression compares reasonably well
with the available numerical resuft®. oP(n=u-w(r), with u=(1,1), (249

The simplest functional of the fornd), as explicitl

0 o adeta @ 2(N=1(07(Y). (249

derived in Ref. 15, was not regular when applied to a delta
function density profil (i.e., in the OD limit; see Sec. )y With these weights we can now define the weighted den-
and thus, as commented in Sec. |, had serious limitationssities according to Eq2). The uniform fluid limit of these
especially when applied to freezing. This problem can beajensities is

circumvented by requiring the functional to have the exact

0D expressior{see Sec. Ywhen applied to a delta function (o(r),Ma(r),N3(1)n2(1)— (§o, €11, 21, £2),
density profile. Indeed it was foufitthat the general form of where

(29
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0'”_)\” if |U|$)\|J

= o) p (u)=
(50,51,52)—2 (L0i,07)pi, (26) |-|J(U) 0'ij_|U| if |u|>)\ij, (34
in agreement with Eq(3). Notice that the dimensions of, Nij=|oi—ajl/2. (35)
are as discussed in Sec. Il. For this set of weighted densitie;g\,S a result we get the following expression for the DCF of
Eq. (4) becomes the uniform fluid:
®=aghotani+biny Ny, @ ¢y (N=[x O+ XDy +xXPVy(]fy(n, (36
and substitution into Eq.15) leads to where
1 a b, 1
,: ,: ,: (O)_
ap 1-n,’ Q 1n,’ by i-n, (28 XT=1g, (373
(the prime denotes derivative with respectntg, whose so- 2¢,
lution is given by X(l)zm, (37b
2
d; €1 2
ap=do—In(1—ny), a;= , b= , (29 €o 2§
? ? 1 &7 1-&° (379
dg, di, ande; being integration constants. The valuedyf d
is easily determined by the requirement for the excess fre8N
energy per particle of the uniform fluid that Sj(r)=- %[Lij(x)+Lij(y)]fij(r), (383
Fex () Vii(r)y=—L;i (X)L (y) f;i(r). 38h
o=iimg = im L =g, 30 1 (N==L 0L () F;(1) (380)
p—0 N p—0 Mo Notice the similarity between Eq$36) and (18); in fact,

Now, as stated in Sec. Il, determining the remaining con-Vii(r) andS;(r) are the area and mean lengfioportional

stants needs the derivation of the DCF of the uniform quidto the perimeter of the overlap region(a rectanglg of

through Eq.(7), which, because of the for27) for the squares andj when the center-to-center vectorrisThese
free—energy.delilsity will be given by geometric measures are the same as those used to define

and &,, respectivelysee Eq(26)].

—c;j(r)= 1_L§2{w§2>®wg°>(r>+w§°>®w,<2>(r) B. D=3
+2d1wi(1)®w}1)(r)+2e1W§1)®W}1)(r)} by The Mayer function of two parallel hard cubes is given
+H20hey) o {09 0fM() f ()= =0 (0 —|x)O (o7 — l2)):
(1-&2) ! ij(N)==0(a;j=|x)O(aij—|y)O(a;j—|2]); (39
+wi<1)®w}2>(r)} ';hsus according to Eqg20) and (21), it can be decomposed
+ —ZEO +(2d;+ey) —3455 —fi(N=02202(N+ 0% 0¥ +w?ew(r)
(1-4,) (1-4,) ] ' j i j i ]
X P o w?(r). (31) +wPew?(r), (40)
The low density limit of this equation is where now
—Cj(N~oPee?(N+ e’ ® 0?1 o (N=LEY) (), (413

+2d;0 M@ wfV(r)+2e;w P owY(r),

thusd;=1/2 ande;=—1/2 for it to match Eq.(23). This

W) =(R(X)G(Y) G(2), G0 Ti(Y) Ei(2),

fully determines the functionab as Gi(x¥)&i(y)7i(2)), (41b)
2— .
®=—ny In(1—ny+ w21 =G0 Ti(Y) 7i(2), () Gi(Y) 7i(2),
2(1—n,). (32
. Ti(X)7i(Y){i(2)), (410
Let us now replace the values obtained for the constants
back into Eq(31) and perform the convolutions. For that we 0®(N=1,(x)7(y)7.(2) (410
have to make use of E420) and ' R
and we will introduce two more weights,
Ti®7'j(u):|_ij(u)®(0'ij—|U|), (33)
with o' (N=u-w™(r), o r=uw?(), (42)
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with u=(1,1,1), since they will be needed later on. We againeration, but also the term does. It cannot appear in a rota-
define weighted densities as(2), whose uniform fluid limit  tionally invariant functional, and therefore it has no counter-
is part for HS. The three termay, b,, andc, appearing in Eq.
(45), are the only independent third-order, axes-exchange
(ng(r),n1(r),nx(r),ns(r))—(&p,&1U,€,U,&5) (43 symmetric terms; it is straightforward to check that any other
: term of this kind must be a linear combination of these three.
[and thereforeny(r), ny(r)— 3¢, 3¢, with (Notice that this discussion is irrelevant for=2.)
If we now substituteD into Eq. (15) we obtain

(é0.61,62,63)=2 (L07,07,07)p; (44)
I . 1 , al I bl
According to these definitions, E¢4) becomes 3= 1-ng’ al_l—n3’ 1 1-ny’ 46
— 3
®=agng+asniNy+byns-Ny+azn;+bynan, ny , 2 , 2b, ,  2c
a2_1_ ) 2_1_ l c = 1_ )
+CNny-Nyeny, (45 N3 N3 N3
wherev-v-v=v}+v3+v3. Notice that thec term did not ~Wwhose solution is
appear in Ref. 24 — although, as we will see, it does not
affect the results obtained there for the uniform fluid. The —de—in(1 o b.— €1
presence of tha's andb’s terms simply resembles the func- o= do=In(1=ny), a1_1—n3’ " 1-ny’
tional form introduced for H$® Such terms can easily be (47)
justified for HS since the symmetry of the system imposes d, e, S

rotational invariance. However, this does not hold anymore a2=m, bfm, c= m
for PHC and, in fact, none of those terms is rotationally 3 3 3
invariant in this case, because they involve dot products withdy, d;, €;, d,, e,, and d being integration constants. The
the fixed vectoru=(1, 1, 1. Since the vector densities al- same requiremeni{30) implies dy=0, as in the two-
ways have positive components, the symmetry which mustimensional case. To determine the remaining constants, let
be preserved in this case is axes exchange. BotA'thand  us compute the DCF of the uniform fluid by inserting Eq.

the b’s terms keep the functional symmetric under this op-(45) into (7). According to expressiongt7), it becomes

—cj; {07207+ 0”80P+dy (00 0@+ 0@ w0P)+e (WP ow? +wZow)}

1
1 1-¢
bt (2(90y+ 26;)0f2'5 of+6(e+ W W+ (30 +e) (03 0f+ 07 B 0f )
~S3

2

&1 2
+](3d;+ey) mz+(9d2+362+ 0) (1-&)° (wi(z)®wj(3)+w§3)®wj(2))

66,6, 54¢3

¢
(1—&,)7 " (3U218) g 5

0
Tla—e2”

(3d,+ey) o’ w® (48)

(we have omitted the dependenceran order to shorten the k

expression By comparing with Eq.(40) the low density A = fij(r) fir ® fkj(r)- (49)
limit of this equation, i

_ e 3 g (0 (0) g ,(3) . . . . .
Cij(N~wi"@w; (1) + 0" ®w;™(r) The convolution of the right-hand side factorizes into three
+d1(wi(1)®w§2)(r)+w§2)®w}1)(r)) integrals, each of the form

+ey(wiMew?(r) +wPewP(r)),

it can be inferred thatl,;=0 ande;=1. j O (o —[thO(o—|u—thdt (u=xyy,2).

In contrast to what happens in two dimensiodsis not
fully determined yet. There are three coefficients left to be
fixed. Thus we have to make use of the next order in thélhis integral can be readily computed, as it has the same
density expansion of the DJIEQ. (16)], and this leads us to form of Eq.(33) with ¢;/2 ando;/2 replaced by, andoy;
compute the diagram respectively. Thus
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k

N = Fi®)ow + L (@)llow + Li)]low + Ly ()]

1 J

which inserted in Eq(16) yields
—Cij(r)=—1;;(r) — &fij(r) + 3&R;(r) + 3£, S;(r)

+&Vii (N +(p?), (51
with
Rij(r)=—3[Lij(x)+Lij(y)+L;;(2)1f;;(r), (52a
Sij(r)=—3[Lij()L;;(y)+Lij(x)Li;(2)
+Lij(y)Lij(2) 1f;(r), (52b)
Vij(r)=—Li(x)Li;(y)Lij(2) fi;(r), (529

By Fourier transforming function&?), it is straightforward
to see that

Rij= %{w§3)® wj(l) + wi(l)® w}g)

+ 0280w ew?), (533
S;= o0+ 0?0}, (53b)
V=P (530

On the other hand, Eq48) has the following expansion up
to first order in the densities:

- Cij = - f” - §3fij + 52{w§3)® w}l)‘f' wi(l)® w}3)
+2(9d,+26;) 07 @ 0f?) +6(e,+ H)wP ewi?}
+3£1S+&Vij -

A comparison of this equation with Eq&1) and (53) im-
mediately leads to 2(®+2e,)=1 and 6€,+0)=—1,
whose solutions ard,=5/54+26/9 ande,= —1/6— 6. We

(59

cannot fix § yet, and thus the expression obtained so far fo
the functional® has a free parameter, which will be fixed in
Sec. V by the dimensional crossover requirement. Neverth
less, for the uniform fluid theé dependence cancels out and
we recover—except for the different normalization—the ex-
pression for the free energy per unit volume of the uniform

mixture reported in Ref. 24, namely,

3 I3
O=—§In(1—¢z) + 1{’:12 (1_253)2’ (55
as well as that for the DCF,
cij (N =[x Y+ xRy (1) + x?'s;(r)
+XV(0 1), (56)
with
1
(0)
X _1_531 (573)

r

e

6385
(50
[
3¢,
(H_—__ ~>¢
ANCErN 570
3¢ 6¢5
(2) —
X T T 1 e (679
&o 6¢,6, 65
O T A R A LE 679

IV. THERMODYNAMICS OF THE UNIFORM FLUID

Let us derive here the equation of state of a mixture of
hard particles from the FMT introduced in Sec. Il. We can
readily see that, in the uniform fluid limit, Eq14) already
provides a simple equation for the pressure of the mixture
once we know that of the free-energy denstby,in terms of
the weighted densities. The pressure thus obtained fulfills the
compressibility equation for a mixturd,

P .
Bo—=1-2 pit;(0) (58)
Pi j
(the hat denotes the Fourier transforiio see it we have to
notice that, given the way in whiclr was derivedp is also
given by Eq.(10); so, if we take the derivative of that equa-
tion with respect tg,;, we get

P PR
— =1+ ‘(7)
Bt azy Mo onon, (0
2
= . ~ () ~(a)
1+; p% nan, & (0&*(0), (59

where we have used that in the uniform fluid limit,
=3,pi®*(0), according to the definitiodEq. (2)]. The
equivalence of Eq958) and (59) follows from (7).

When applied to the expressions ®f obtained in Sec.
Il for PHC in two and three dimensions, we obtain, respec-
tively,

BP= o, £ (D=2) (60)
1-& (1-&)° ’
& 3&b 28 ~

AP =1 a2 T a—g)® (P=¥- D

Notice that, as a consequence of using the scaled particle
approximation[Eq. (14)], the resulting equation of state is
but ay-expansion of théth order3 by construction exact
up to the third virial coefficien{see below, Sec. V, and the
Appendix.

Another interesting property of the equation for the pres-
sure(14) is that
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IP D\ &2d @ We can compare the virial expansions of E@) and
ET :( o anang X “, 62 (62 with the exact expressions for the second and third virial
coefficients,
since this is the coefficient of the term® ® w(® in the
expression for—c;;.>* And this has a further unexpected p’B,=1 2 pipj(UiJrUj)D, (68)
consequence, because i
_Cij(o)zz X' (o= Nij) (63 PaBszéiJEK pipjp(oio;+ oo+ oyoi)®, (69)

from which, if for instanceo;= o, we obtain to conclude that they are exact up to the third term. This is

not surprising forD=3 because exactness up to the third-
¢ (0)=> x W= f 64 order diagram was imposed as a requirement to fully deter-
CIJ( )= X Ui_B& ) (64) . . .
o Di mine the DCF of the mixturésee Sec. I, however, such a
a “zero separation theorem” which is knownto hold for condition was unnecessary for=2, and yet it is automati-
the PY DCE3® cally fulfilled (for a deeper insight on this fact see Sec. V as
' . . : well as the Appendix
The pressure of a uniform fluid can also be derived from - . -
. oo As concerns the remaining virial coefficients, we can
the virial equation” :
compare what comes out of the equations for the pressure
, 1 with the exact results for the one-component fffiidnd re-
BP'=p+ 55 ; Pipif r-Viij(r)gi(rdr, (65 alize that they are all different. So it turns out that the theory
. . _ . _ begins to be approximate at the level of the fourth virial
whereg;; (r) is the pair correlation function of the mixture. It coefficient. Furthermore, in Ref. 36 the virial coefficients for
is a well-known result that for HS the PY equations of statethe PY equations of state are also computed; as they do not
obtained from the compressibility and the virial expressionsmatch those given by this theory, we can conclude that, con-
are differenﬁo a thermodynamic inconsistency arising from trary to what happens for ij)s'the DCF Coming out of this
the approximation. Let us see what comes out of the viriatheory is not the PY one. This has an unfortunate conse-
equation when applied to a mixture btdimensional PHC. quence, namely that the pair correlation function cannot ful-
Since the Mayer function idf;;(r)= —wi(jD)(r) (we will  fill the “core condition,” i.e., it takes nonzero values inside
henceforth use{® to denote the weight{® but with o;/2  the core.
replaced byo;;), then

r-Vf(n =20 (). V. HIGHLY INHOMOGENEOUS FLUIDS: DIMENSIONAL
. L CROSSOVER
This is actually, up to a factar;; , a delta distribution on the
surface of the cubeuj, thus By construction, density functional theories are the ap-
propriate tool to study fluids exhibiting all kinds of inhomo-
f dr2w§jD’1>(r)=f ds geneities. As discussed in Sec. |, a typical inhomogeneous
a(ivj) situation in which classical functionals tested their validity is

and, given that;; is discontinuous at the surface of that the solid phase, but this is neither the only one nor the most
cube, Eq.(65) becomes extreme among all of them. In recent years confined fluid

have received a great deal of attention, due to the strong
effects that spatial confinement has on the structural and dy-
namical properties of fluids, as well as on the location and
- o o character of phase transitions. But it is precisely for highl
[A_a('UJ)E,a('UJV_a('UJ) dgnptes Fhe outer surfgce inhomogeneopus phases appearing undper coméi/nemeng: t)r/1at
minus the inner surface; actually itis an integral of the J_umpdensity functionals show their limitations. Such strong inho-
of g;; atthe _surface of the cojaf we now use the contln_wty mogeneities may also reduce the dimensionality of the sys-
of the functiony;; =g;; —C;; across the surface of the inter- o\ 115 a fluid between two close plates would be a
a_ctlon core and the fact that; vanishes outside, we can quasi-2D system, a fluid in a narrow cylindrical pore a
simply write Eq.(66) as quasi-1D system, and a solid phase, in which every particle
1 can be considered as being inside a cavity holding no more
BP'=p— 55 > PinUijj__ __g(r)ds. (67)  than one single particle, can be considered a “quasi-OD”
ij a(iuj) o . . .
system. Now, it is clear that if we imposed those constraints
If we now apply this expression to the DCFs obtained in Secon the exact 3D functional we would obtain the correspond-
Il for PHC in D=2,3, we obtain the remarkable result thating 2D, 1D, or 0D functional. But this property may not be
PY=P, and so the theory is thermodynamically consistentsatisfied for an approximate functional. As a matter of fact,
Although this seems to be a general property of the FMT fomone of the “classical” functionafs—built upon bulk 3D
PHC, we have not been able to prove it with such a generdata—do it, because such a requirement needs to be imposed
ality, without resorting to the actual expressions for the DCFat the construction of the functional. This is an important

1
B U=P+ﬁ; PinUiif

~gi(r)ds (66)
Ao(iUj)
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requirement if one wishes to use the 3D functional to de- To see why this is so, let us first consider the 3D to 2D
scribe fluids under extreme confinements. Furthermore, cordimensional crossover. Let us define a quasi-2D set of den-
trary to the accumulated evidentd, is also an important sity functions as that made of densitiggx,y,z) vanishing
requirement for the functional to provide a sensible solidfor |z|>a;/2. It is clear that a set of densities like those of
phase; otherwise, despite that a freezing transition is pre=g. (70) belong to this class. Because of the definition of the
dicted, it may have unphysical properties, such as the alreadyeighted densities, it is easy to check that for this type of
mentioned negative density of vacancies or the regular bedensitieqsee Eq.(41)]

havior of the free energy at closest packiig?

i - in ei ; 1 an$Y 1 an%y)
The simplest FMT functional for HS, in either of its two n®=_"signz 3 n®=_ "= signz 2y
15,20 : e 27 >S9 9z 1x 5 S19 9z
forms;>“" has proven to be suitable for describing the bulk
phase, the density profiles near wéflss well as those in- . e L nd
side a slitlike por€? but it dramatically fails to describe the n®=_Zsignz =2, n®=—_Z signz 22
y= 2 gz ' 0 2 9z

solid, predicting a stable perfect solid for any density. The

reason for this bgcame clear wh_en ttenensional Cross-  [along this section, a superscrif@) will be used to specify
oversof the functional were considered. To be precise, wane dimensiofy and therefore, Eq72) can be writterinotice

will say that a giverD-dimensional functional has aright  that, in terms of the vector components, the numerator of the
to d(<D) dimensional crossover if last term in Eq(72) is simply 31(23X)n(23y)n(23z)

FP[{pi}1=F{p/}1, for (3)n(3)

1 d 2xN2
d®=—Zsignz—| —n In(1-n{P)+ =x|,
Pi(X, - Xp) = p{ (Xy,.. Xa) 8(Xg 4 1)--8(Xp), 2 SN2 5 M NLTNE T
(70 (72
q ) ) and thus
where F® stands for some good approximation of the
d-dimensional free-energy functional. When constrgita) eX:f f j 3
is imposed on the HS FMT functional, it turns out that it has BF dx dy dz®
reasonable dimensional crossovers from 3D to 2D or 1D, but
it develops a singularity when it is reduced to 833 The :j j dx d\{ @ x,y.0IN1-nP(x,y,0)]
OD functional can be easily derivEtand it provides the “
following expression for the excess free energy: n(fx)(x,y,O)n(f)}(x,y,O)
O©= 7+ (1= p)n(1-17), (71 TP (xy.0 73

where (<1) here is simply the average number of particles.;t e now make the specific choicepi(x,y,2)
For a given density functional to predict a solid phase, it— , (x v)5(z), then it is straightforward to see that, accord-
is sufficient that the 3D to OD dimensional crossover yields 3ng to definitions(24), n(33)(x,y,0)= n(zz)(x,y), n(23x)(x,y,0)
finite value, be it Eq(721) or not; but for the solid not to have =n(12)(x,y), n(23)(x,y,0)=n(12)(x,y), and n(f)(x,y,O)
the abovementioned unphysical properties the crossover n()‘y)(x y), and go the integr’;nd in Eq73) is sirﬁZpIyCD(Z)
should produce Eq71).****It turns out that there is a way ¢ Siver; b;/ Eq(32)
to regularize the HS.FMT functional that yields the exacts If we consider .quasi-lD density functions instead, i.e.,
3D to 1D and OD dimensional crossov’éﬁrand.does no_t functions p;(x,y,z) which vanish if |z|>a/2 or if |y|
change the results for the bulk phase. With this regularlzecLU_/z, then two more relations between the weighted den-
functional it is possible to obtain a solid phase with the Cor'sitiels arise, namely,
rect density of vacancies and a divergent free energy at the
closest packing density. 3 1 ang’ 1 an%,
The same considerations can be made on the PHC model M2y™ ™ 3 SIONY =57, M= =5 Signy =50
to realize that it already behaves well in this respect. It turns

ouf?® that the 2D functional has exact dimensional crossover¥Vith them we can write

to 1D and 0D, and that the 3D functional can be tuned to 1\2 92
fulfill all the three-dimensional crossovef® 2D, 1D, and <I><3>=( - 5) signtyz) 5 [—n%) In(1—n$)],
0D) by properly setting the constard=1/3 in Egs.(47), (74)

which remained free in the derivation of the 3D functional— )
although its value was irrelevant for the bulk results. The 302nd S0 Eq(73) can be further transformed into
functional for PHC is therefore fully determined to be
,BFe"=J dx{—n%(x,0,0In[1-n(x,0,0]}. (75
ny-n, '
1-n, This result is in perfect agreement with the exact solu-
tion of a 2D model of PHC in a narrow baridWhen the
bandwidth is smaller than twice the edge of a square, the
6(1—ny)* ’ system is essentially one dimensional and Efp) is the

®=—-ngIn(1-ng)+

n3—3n,n,-Ny+2n,-N,y-N;,

+
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exactexpression for the excess free energy. When the bandvhere n(DD) has the obvious meaning. In the Appendix it is

width permit two squaregbut no more than twpoto be on

shown that this generalization of the functional provides a

top of each other, two-dimensional corrections come intdDCF which is exact up to the third virial diagrajne., sat-

play; but this is precisely the point at which E5) stops
being true.

Again, if p;(x,y,2) = p;(x) 6(y) 8(z), then the integrand
of Eq. (75) turns out to b& ®*). This proves both the 3D to
1D as well as the 2D to 1D dimensional crossovers.

isfying Eq. (16)].

The result that th®-dimensional functional can be ob-
tained out of the 0D one by requiring it to fulfill the dimen-
sional crossovers has also been reported foPH8though
derived in a completely different way. It seems, however,

Finally, a further relation between the weighted densitieghat attempts to find a derivation similar to E@9) for HS

which holds for quasi-OD densitigghose vanishing if any
coordinate is outside the intervigt- 0i/2,0/2]),

1

2

makes it possible to express

3
Si nx(m—g)
9 ox '’

3)_
nsy

3
P =

3
- %) sign(xy2) dO(nP), (76)

323y dx

with ®(® defined by Eq(71), and then to transform E75)
into

BFex:(D(O)(n(33)(0,O,O)). (77

For pi(x,y,2) = 76(x) 8(y) 5(2), n3(0,0,0)= », and Eq(77)

is the OD excess free energy given by E¢). The 3D to 0D
(and the obvious 1D to ODdimensional crossover is then
proven.

We can take further advantage of E@6), but first we
have to distinguish between the three edge lengths of t
cube, i.e., we need to consider general parallelepipeds. Th
n® has to be redefined with the weight(®)
= 7(x) 7/(y) 7(2), where

a.i(#)
(%) =0 =X, |.
The transformation makes use of the identity
1. M yi3
_ E SIanM E T (XM)Z W i (XM)’

which implies that Eq(76) can be rewritten as

O O(ng), (78)

R — )1
309 da") o)
where we have introduced the short-hand notation
07 d
=3

Formula(78) yields the same functional as E{82), (74), or
(76) for quasi-2D, quasi-1D, or quasi-OD density functions,

respectively, and so it has the right dimensional crossovers

furthermore, Eq(78) is also valid for arbitrary density func-
tions, so it actually allows to build the functional out of the

are bound to faif® The reasons why PHC behave so well in
this respect as opposed to HS are yet unknown. The connec-
tion between the derivations of the HS and PHC functionals
from the OD ones are also not well understood. We are cur-
rently trying to make some progress along these lines.

VI. CONCLUSIONS

FMT seems to be a powerful and attractive framework to
derive the functional for hard convex bodies from very fun-
damental assumptions. But it has important limitations. For
instance, the impossibility of finding a decompositi@ for
the Mayer functio® 2 limits its extension to arbitrary mo-
lecular shapes. Attempts to overcome this limitation should
probably follow the new scheme of the theory for HSn
which this decomposition is avoided. Nevertheless, with the
present formulation the theory can still be extended to other

pmolecular shapeg&uch as, for instance, mixtures of parallel
Gylinders®) by using the ideas of this work.

Another aspect of the theory which deserves further
study is its correct place within the context of liquid theory.
Its connections to scaled particle theory are obvious here and
there and, as we have shown, they are even at the heart of its
original derivation; however, the formulation yields a func-
tional valid for inhomogeneous phases as well as for the
homogeneous ones, and when it is tested against dimension-
ality reduction, it not only seems to behave well, but it ap-
pears that this strong requirements can replace the resort to
scaled particle theory.

Apart from these fundamental questions the theory has
many potential applications, some of which will be the sub-
ject of the sequel to this article. The great advantage of FMT
as opposed to alternative approaches is that it deals with
homogeneous and inhomogeneous phases at the same foot,
without having to incorporate the inhomogeneity by means
of heuristic extensions of the theory. For the case of PHC its
application is even simpler because of the simplicity of Eq.
(79), which essentially tells us that the construction of the 0D
free energydepending of only one single weighted denjpity
is all we need to compute that of tile-dimensional system,

whicheverD.

0D one, whichever the density functions, and even more, it
provides a simple way to generalize the functional to arbi-ACKNOWLEDGMENT

trary dimensions, namely,
D

O =g

OO (nd)y, (79
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nating discussions, unvaluable suggestions, and continuous
encouragement.
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APPENDIX: LOW DENSITY EXPANSION OF THE D-
DIMENSIONAL DCF

We are going to show in this Appendix that the func-

tional given by Eq.(79) yields a DCFc{”), with the right
low density expansioll6).

6389

since doW/do'™ =1, this expression immediately yields

the desired result.

Toward this purpose we first take the second functional®J. F. Lutsko and M. Baus, Phys. Rev. Lé&t, 761(1990; Phys. Rev. A

derivative of the excess free energy and then take the unis

form limit; thus according to E¢(.79)

_ P
Ci(jD)(r):@ Ci(jO)(r)u i =25 950" (A1)
(0)/py— _ 1 (D) g (D) (A2)

where 7]=Ekpk0'f<1)---(fﬁD), and
D (1)
O'.

o®m=1] @ '——|x#|)-

pn=1 2

The convolution in Eq(A2) factorizes and can be written
[see Eq(33)]
D
oiPeo?(n=I1 L0 =[x, (A3
=

where the superscripts Ift”) ando{) have been added as a
reminder that ther's are those corresponding to tkg co-
ordinate.

Now, the low density expansion of EA2) is
cP(N~—1+n+--)oP2w®(r); (A4)

let us see that when inserted in E41) the resulting expan-
sion is[see Eq(50)]

ciP(r)~fi(r)

D
142 el T+ 1P 0x)]+ -+

k
oo+ N o
k i

From Eq.(A3), the first term in thec{™ expansion will be
-9 wi(D)®wJ(D)(r)
D

_}':[1

which, by making use of the relations

o (L ()0 (ol =[x},

_3 (p) (p) ¢ (1)
do'™ Lij (XM):l and Lij (O-ij )=0,
simply transforms intd;;(r). As concerns the second term,
D
d

— 7 (D) D)ry= — R S (7))
Y 0 Qw;(r)= Ekpk}_:ll 9o {o

XL{M(x,)0 (o =[x}
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