
Eur. Phys. J. B 71, 587–595 (2009) DOI: 10.1140/epjb/e2009-00189-0

Promotion of cooperation on networks? The myopic best
response case

C.P. Roca, J.A. Cuesta and A. Sánchez



Eur. Phys. J. B 71, 587–595 (2009)
DOI: 10.1140/epjb/e2009-00189-0

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Promotion of cooperation on networks? The myopic best
response case

C.P. Roca1, J.A. Cuesta1, and A. Sánchez1,2,3,a

1 Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Universidad Carlos III de Madrid,
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Abstract. We study the effect of a network of contacts on the emergence of cooperation on social dilemmas
under myopic best response dynamics. We begin by summarizing the main features observed under less
intellectually demanding dynamics, pointing out their most relevant general characteristics. Subsequently
we focus on the new framework of best response. By means of an extensive numerical simulation program
we show that, contrary to the rest of dynamics considered so far, best response is largely unaffected by
the underlying network, which implies that, in most cases, no promotion of cooperation is found with this
dynamics. We do find, however, nontrivial results differing from the well-mixed population in the case of
coordination games on lattices, which we explain in terms of the formation of spatial clusters and the
conditions for their advancement, subsequently discussing their relevance to other networks.

PACS. 89.65.-s Social and economic systems – 87.23.Ge Dynamics of social systems – 02.50.Le Decision
theory and game theory – 89.75.Fb Structures and organization in complex systems

1 Introduction

The origin and sustainability of cooperation in animal and
human societies is a long-standing puzzle whose impor-
tance cannot be overstated [1]. Since the pioneering works
by Hamilton [2,3], and the introduction of the theoreti-
cal setup of evolutionary game theory [4], a number of
reasons have been advanced as possible explanations for
the ubiquity and robustness of cooperative behavior [5]
(see also [6]). Among these proposals, network reciprocity,
or the existence of a (possibly social) network of con-
tacts that determines the individuals a particular one
interacts with, has received much attention in the last
two decades. This specific line of research started with
a seminal work by Nowak and May [7], who studied the
Prisoner’s Dilemma (PD) [8] game on a square lattice,
finding evidence for substantial amounts of cooperation in
parameter regions where defection was the only possible
outcome in a well-mixed population (i.e., when every in-
dividual interacts with every other one). Subsequent work
has explored many other choices for the network as well
as other dynamical rules for the update of strategies in
the game, giving rise to a considerable amount of work [9]
which, however, yielded quite a few contradictory results
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and no global picture of the observed phenomenology. In
fact, only recently [10] such a general conclusion was pre-
sented for homogeneous spatial networks, the case of het-
erogeneous ones being well understood from other recent
works [11,12].

In this paper we aim at extending our work on games
on spatial structures and homogeneous degree networks to
the case when the updating of the strategies follows the
myopic best response rule [13,14]. There are a number of
reasons that support the relevance of such a study. First,
previous works on games on networks considered in gen-
eral only imitative rules, i.e., a specific individual updates
her strategy by imitating the strategy of one of her neigh-
bors selected through different protocols (see e.g. [9] for
a review). Such updating procedure makes only modest
requirements on the cognitive capabilities and/or infor-
mation or memory of the players: in these contexts, best
response schemes are the next step of sophistication, posit-
ing that individuals revise their strategies by choosing the
best reply to the strategies used by their neighbors in the
previous time step. This choice of updating based only on
the previous action of the neighbors is the reason why this
dynamics is usually referred to as myopic [15], although
for brevity we will just use the term “best response” in
what follows. Second, best response not only endows the
individuals of the model with more complete intellectual
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capabilities but also is an innovative rule, as it allows ex-
tinct strategies to be reintroduced in the system whereas
imitative dynamics cannot do that. Third, best response
is the rule of choice in most studies from the economical
viewpoint, the reason it is not so often considered among
physicists being that it gives rise to a differential inclusion
rather than a differential equation [16] and, subsequently,
it is less amenable to analytical approaches. Finally, earlier
works on best response dynamics on lattices [14] left inter-
esting, hitherto unanswered questions such as the strong
dependence on the initial conditions of the outcome of
the evolution in coordination games, a point that we will
specifically address here.

We discuss our results according to the following
scheme: in Section 2 we summarize what is known about
evolutionary games on networks of homogeneous degree,
which includes spatially structured populations and ran-
dom networks. We will consider in Section 3 the specific
case of the Snowdrift game [21] as a paradigmatic exam-
ple of the difficulties arising in these studies. We will then
proceed in Section 4 to present our simulation results on
best response dynamics on different types of networks and
to subsequently discuss in detail the behavior observed in
lattices, providing an explanation as to why there may
be more or less cooperation on lattices than on the well-
mixed case, depending on the initial conditions. Finally,
Section 5 concludes the paper.

2 Evolutionary games on networks
of homogeneous degree

2.1 2 × 2 evolutionary games

The basic ingredient in the models we are going to dis-
cuss is evolutionary game theory and, in particular, 2× 2
games. Let us now briefly introduce the main concepts. A
symmetric 2×2 game is a game with 2 players who choose
between 2 strategies and with no difference in role. Each
player obtains a payoff given by the following matrix

C D
C
D

(
1 S
T 0

)
.

(1)

The rows represent the strategy of the player who obtains
the payoff and the columns that of her opponent.

The strategies are labeled as C and D for cooperate and
defect, because we interpret the game as a social dilemma.
Indeed, certain values of S and T undermine a hypothet-
ical situation of mutual cooperation. If S < 0 a cooper-
ator faces the risk of losing if the other player defects,
performing worse than with mutual defection. If T > 1 a
cooperator has the temptation to defect and obtain a pay-
off larger than that of mutual cooperation. Both tensions
determine the social dilemmas represented by symmet-
ric 2 × 2 games [17]. Restricting the values of the coeffi-
cients within the intervals −1 < S < 1 and 0 < T < 2,
we have the Harmony game [18] (HG, 0 < S, T < 1)
and three classic social dilemmas: the Prisoner’s Dilemma

(PD, −1 < S < 0, 1 < T < 2), the Stag-Hunt game [19]
(SH, −1 < S < 0 < T < 1), and the Hawk-Dove [20] or
Snowdrift game [21] (SD, 0 < S < 1 < T < 2). Each game
corresponds, thus, to a quadrant in the ST -plane.

To study the competition between cooperation and de-
fection from an evolutionary perspective, the payoffs ob-
tained by playing the game are considered as fitness and
a darwinian dynamics is introduced to promote the fittest
strategy. The classic framework to do so is the replica-
tor dynamics [16,22], which assumes an infinite and well-
mixed population, i.e. a population with no structure,
where each individual plays with every other. Let x be
the density of cooperators, and fc and fd the fitness of
a cooperator and a defector, respectively. The replicator
dynamics states that x evolves as [16]

ẋ = x(1 − x)(fc − fd). (2)

Then, if cooperators are doing better than defectors their
density rises accordingly, and the opposite occurs if they
are doing worse. Provided that the initial density of coop-
erators x0 is different from 0 and 1, the asymptotic state
of this dynamical system is, for each game (x∗ represents
the asymptotic density of cooperators) [16]: HG, full co-
operation, x∗ = 1; PD, full defection, x∗ = 0; SH, full
cooperation if x0 > xe, or full defection if x0 < xe; SD,
mixed population with x∗ = xe, regardless of the initial
density x0. Both in SH and SD the coexistence equilib-
rium has a cooperation density xe = S/(S + T − 1). It is
important to note that the outcome of these four games
encompasses all the possible cases for any symmetric 2×2
game [23] (see also [6]).

2.2 2×2 evolutionary games on networks

As we stated in Section 1, in 1992 Nowak and May [7] in-
troduced spatial structure in the context of evolutionary
games by considering the players located at the nodes of a
square lattice, playing the game only with their neighbors
(and playing the same action vs every one of them) and
not with the whole population. They introduced evolution
in this setup by using the unconditional imitation rule
(also known as “imitate-the-best” [9]), where each player
chooses the strategy of the neighbor with largest payoff,
provided this payoff is greater than the player’s. With
this rule, they found that cooperators survived by self-
organizing in clusters, where the interactions within the
clusters yielded larger payoffs to cooperators than those
obtained by defectors at the boundaries of cooperators’
clusters.

Nowak and May’s pioneering work opened the way to a
large number of studies focused on different games, differ-
ent evolutionary rules, and different lattices or networks.
As a loose conclusion of those works, it was generally be-
lieved that the existence of structure in the population,
whether spatial or of another kind, enhanced the emer-
gence of cooperation in games where defection was the
norm. However, such conclusion did not agree with all the
available research, contradictions arose at several points
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Fig. 1. (Color online) Asymptotic density of cooperators x∗ in homogeneous random networks (upper row, A to D) compared
to regular lattices (lower row, E to H), with degree k = 4 (first and third columns, A, E, C, G) and k = 8 (second and forth
columns, B, F, D, H). Left plots (A, B, E, F) correspond to the replicator update rule, whereas right ones (C, D, G, H) use
unconditional imitation as update rule. The initial density of cooperators is x0 = 0.5 in all cases. The graphs display the key
role of both the clustering of the network and the update rule (see main text). The promotion of cooperation is, in general,
restricted to SH. The influence on PD is only significant when the update rule is unconditional imitation.

(an example of which will be discussed in Sect. 3 below)
and there were no studies that identified parameter regions
where one could firmly establish it. Therefore, in [10] we
carried out a very ambitious simulation program, as a re-
sult of which we were able to reach some unambiguous
conclusions. While a full report of our results is available
in [10], we find it convenient to briefly recall here a few
of the ideas presented there, both as background informa-
tion for the reader as well as to introduce the way we will
present our new results.

One of the most relevant findings reported in [10] was
that the spatial structure of a population, when modeled
by a regular lattice, only has a significant effect on coop-
eration when the clustering coefficient is high, as seen by
comparing results with those of homogeneous random net-
works of the same degree. This is illustrated by Figure 1,
where results for random homogeneous networks (upper
row) are compared to results on regular lattices (lower
row). Only when there is high transitivity or clustering in
the network [24], as occurs for regular lattices of degree
k = 8, significant differences appear.

Figure 1 also highlights the crucial influence of the
update rule. Right columns show the results with un-
conditional imitation (introduced above), while the left
ones present those obtained with the so-called replica-
tor rule [16,22]. This rule is defined as follows: let i =
1 . . .N label the individuals in the population. Let si

be the strategy of player i, πi her payoff and Ni her

neighborhood, of size k. With the replicator update rule
one neighbor j of player i is chosen at random, j ∈ Ni.
The probability of player i adopting the strategy of player
j is given by

pt
ij ≡ P{st

j → st+1
i } =

{
(πt

j − πt
i)/Φ : πt

j > πt
i

0 : πt
j ≤ πt

i
, (3)

with Φ = k(max(1, T )−min(0, S)) to ensure P(·) ∈ [0, 1].
Figure 1 presents the results for the space of 2 × 2

games as a whole, using a color code which will be the
same hereafter. Furthermore, we have introduced a quan-
titative measure CG for the overall asymptotic coopera-
tion in game G (= HG, PD, SH, SD), given by the mean
value of x∗ over the corresponding region in the ST -plane.
This global index of cooperation has a range CG ∈ [0, 1]
and appears on the graphs by the quadrant of each game.
Both the qualitative assessment of the plots and the com-
parison of the values of this quantitative index yield an
important regularity in the effect of the social structure
modeled by this kind of networks: cooperation is gener-
ally enforced in coordination games (SH), specially when
the clustering coefficient is high. The influence on anti-
coordination games (SD) depends on the update rule and,
remarkably, the positive effect on PD requires a particular
update rule, namely unconditional imitation. We refer the
interested reader to [10] for a complete discussion on these
and related issues.
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Fig. 2. (Color online) Simulations of the models discussed in
[25] (A) and [26] (B). The lines mark the range of parameters
studied in both works. See main text for a discussion.

3 The case of SD

Previous section introduced an important property of
these evolutionary models, the crucial dependence that
the result has on the update rule. We will now discuss
a specific example which, on the one hand, allows us to
make this point and, on the other hand, will introduce us
to our main subject, namely the effects of best response
dynamics.

In 2004, Hauert and Doebeli [25] presented a study of
the Snowdrift game in which they concluded that, con-
trary to the general belief, the existence of a spatial struc-
ture may inhibit cooperation. To that end, they studied
the dependence of the level of cooperation on the param-
eter r, the cost-benefit ratio (understood as cost of coop-
erating and corresponding benefit accrued), which in our
parameterization is r = (T − S)/2. They did not consider
the whole ST -plane but only the line given by T = 1 + r,
S = 1 − r (see Fig. 2) and obtained asymptotic levels of
cooperation below those found in well mixed populations.

One year later, Sysi-Aho and coworkers [26] repeated
the same study changing only the dynamical rule: where
Hauert and Doebeli had used the replicator rule men-
tioned above, Sysi-Aho and coworkers used the best re-
sponse rule, introducing a probability p < 1 to update the
strategy, i.e., at every time step every player chose her
strategy as a best response to their neighbors with prob-
ability p or left it unchanged with probability 1 − p. The
reason to do that is to prevent the systems from falling
onto a sequence of alternate states of full defection and full
cooperation, which is an artifact of the rule (and which are
never reached as soon as p < 1, see [26]). They studied the
same range of parameters than [25], finding that cooper-
ation subsisted even for r close to 1, being larger (resp.
smaller) than in a well mixed population for large (resp.
small) r.

In order to understand better this issue, we have re-
produced the simulations in [25,26], using the same square
lattices, neighborhoods (k = 8) and initial conditions (co-
operation and defection equally likely) they used, obtain-
ing the results we summarize in Figure 2. As we may see,
the two different dynamics lead to rather different results
when looked at in the framework of the whole ST -plane.
We stress that, along the line indicated in the plots, we

exactly reproduce the results reported in those previous
studies. There is indeed a decrease of cooperation when
using the replicator dynamics as in [25], along the line of
interest but also in the SD quadrant as a whole. How-
ever, when the dynamics is best response we do observe a
stepped profile in the SD quadrant as Sysi-Aho et al. did,
while the mean value of the cooperation over the quadrant
is the same as in a well mixed population. The reader is
referred to the middle panel of Figure 3, where the results
on a well mixed population with the same initial condition
are depicted.

These results open up a series of questions, beginning
with the following: what is the effect of best response dy-
namics on other networks, given that on a square lattice
its effect is not very noticeable? Let us recall that best
response is a step further towards “intelligence” of the
agents as compared to the replicator rule, an imitative,
non-innovative dynamics, and therefore we might expect
that players could exploit better the existence of a net-
work. This issue is what we discuss in detail in what fol-
lows. However, there is a more general problem, namely
what does it mean “promotion of cooperation by the struc-
ture of a population”? Do we refer to a specific set of pa-
rameters, such as the line studied in [25,26]? Do we refer
to a global measure of the cooperation level in a region,
such as the values we compute for each quadrant? Or do
we refer to the ST -plane as a whole? Note that in this
last case the replicator rule used by Hauert and Doebeli,
while indeed leading to less cooperation in the SD game,
yields a very large increase of the cooperative region in
the SH quadrant, favoring players to coordinate in the
Pareto-dominant equilibrium [22]. Had we been looking
at that quadrant only, we would have certainly concluded
that cooperation is promoted by the square lattice. Or,
looking at the SD game, had we considered unconditional
imitation as the update rule, we would have found ev-
idence of spatial structure fostering cooperation in SD.
While we will not dwell any further in this issue here (but
see [10] for a discussion in depth of these problems) we
want to stress that statements about promotion of coop-
eration should be made in a much more specific manner
without trying to attach to them unchecked general im-
plications beyond the scope of the case under study.

4 Best response dynamics

4.1 Different types of networks

Motivated by the reasons discussed in the introduction
and by the issues raised by our study in Section 3, we
undertook the study of the effects of the best response
dynamics on a large family of networks. We considered
lattices, which may represent spatial structure, homo-
geneous random networks (random networks where all
nodes have exactly the same degree), Erdös-Renyi random
networks [27], small-world networks, Barabási-Albert [28]
scale free networks and Klemm-Egúıluz [29] scale free
networks with different mean degrees, thus exploring all
possible combinations of small-world phenomena, scale
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Fig. 3. (Color online) Asymptotic density of cooperators x∗ in well mixed populations under best response dynamics, with
p = 0.1 (see main text), when the initial density of cooperators is x0 = 1/3 (left, A), x0 = 1/2 (middle, B) and x0 = 2/3 (right,
C).

Fig. 4. (Color online) Asymptotic density of cooperators x∗ in random (left, A and D), regular (middle, B and E), and scale-free
networks (right, C and F) with degrees k = 4 (upper row, A to C) and 8 (lower row, D to F). The update rule is best response
with p = 0.1 and the initial density of cooperators is x0 = 0.5. Differences are negligible in all cases; note, however, that the
steps appearing in the SD quadrant are slightly different.

free behavior and large or small clustering. We have also
considered the complete graph as the reference for a
well mixed population, results for which are presented in
Figure 3.

We will begin by focusing on the case in which the
initial conditions are a 50% of cooperators and a 50% of
defectors. Our reference for comparison will then be Fig-
ure 3B, corresponding to a well-mixed (complete network)
population with that initial condition. A small subset of
our results for the other networks is presented in Figure 4,
showing that the asymptotic behavior does not depend at
all on the type of network considered, with the only and
unimportant exception of slight differences in the stepping

in SD. We want to stress that we have tested many other
networks aside from those presented here with exactly the
same results. Not only the mean cooperation levels per
quadrant are practically the same, but also the depen-
dence on S and T for each quadrant. We note that this
is a very remarkable result, in so far as for most other
(imitative) dynamics studied there is always a largely no-
ticeable effect of the type of network on which the games
are played, as we have seen above (cf. Figs. 1 and 2; see
also [10,11] for more details on homogeneous and scale
free networks, respectively). We have made every effort to
ensure that our results are robust and independent of the
technicalities of the simulations. To begin with, we have
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Fig. 5. (Color online) Asymptotic density of cooperators x∗

in regular lattices with degree k = 8. The update rule is best
response and the initial density of cooperators is x0 = 0.5.
Left (A): asynchronous updating with p = 0.1; right (B): syn-
chronous updating with p = 0.01. Both results are virtually
identical to that of Figure 4E, which was obtained with syn-
chronous updating and p = 0.1.

checked a correct convergence, verifying that simulation
times larger up to a factor of 10 lead to the same results.
On the other hand, the probability parameter p, which
governs how often agents update their strategy, is not rel-
evant, and neither it is the use of asynchronous updating
(see Fig. 5), in which an agent is chosen at random to up-
date its strategy after a round of the game has been played
by her and her neighbors (we note that asynchronicity was
reported to have a small but noticeable effect with imita-
tive update rules in [10]). With all these checks, we can fi-
nally state our first conclusion, namely that best response
dynamics is insensitive to the type of network on which
the game is played, meaning that when the networks are
initiated from the same proportion of cooperators and de-
fectors the asymptotic results are the same as well. This
unexpected result may have interesting implications in ap-
plied contexts, implications which we will discuss in the
concluding section.

4.2 The effect of initial conditions

Having found that best response is largely unaffected by
playing the different 2 × 2 games on a network, we ex-
tended our analysis of the problem to consider different
initial conditions. We initiated our simulations with an
initial density of cooperators x0 = 1/3 or x0 = 2/3 and re-
peated our simulation program for our family of networks.
In order to understand the observed phenomenology, we
find it convenient to begin the discussion by the case of
lattices. Figure 6 shows the results for lattices with dif-
ferent number of neighbors and x0 = 1/3 (the outcome
of the simulations for x0 = 2/3 is similar, with the green
region in the SH quadrant of Fig. 5 being symmetrically
located below the S = T − 1 line). As can be seen from
Figure 6, for 4 and 6 neighbors the results for x0 = 1/3
are indistinguishable from the results for x0 = 1/2. This
must be compared with Figure 3A, which shows for a well-
mixed population a cooperative region in the SH quadrant
that is roughly a 50% of the one we have obtained on

lattices. As the asymptotics is the same for lattices with
4 and 6 neighbors, we also conclude that the clustering of
the network does not play any role. However the lattice
with 8 neighbors shows a striking result, namely the ap-
pearance on the SH quadrant of a region with intermediate
values of cooperation. Let us recall that, as a stand-alone
game, SH has two equilibria, full cooperation or full de-
fection, and that depending on the initial condition the
system ends up in one or the other. This is the behavior
observed in all the lattices and networks studied so far
with imitative rules and also was what we observed for
best response with x0 = 0.5.

In order to understand this surprising feature, the ap-
pearance of regions with seemingly mixed behavior in SH
and its dependence on the number of neighbors, appear-
ing for 8 neighbors but not for smaller numbers, we have
looked in detail at the time evolution of specific realiza-
tions. Figure 7 presents a representative example of this
dynamics with 8 neighbors and for values of S and T in
the intermediate region we are interested in. We clearly
observe that there is an initial stage in which isolated co-
operators (in red) die out and only clusters with a sig-
nificantly larger presence of cooperators avoid extinction
and eventually begin to grow. A careful look at the pic-
tures and at the whole time evolution allows one to notice
that clusters grow due to the advancement of some of its
sides, in particular those which are basically flat but have
just one kink, whereas some others are stopped unless hit
by some other advancing front. Very clearly observable
among the latter are diagonal fronts (see, in particular,
the last three frames in the sequence). This can be easily
understood analytically by just considering the different
possible types of front and the conditions for their ad-
vancement in terms of best response dynamics. Thus, for
a planar front such as

C C C D D D
C C C D D D
C C C D D D
C C C D D D
C C C D D D
C C C D D D

the borderline defectors will become cooperators if S >
3(T − 1)/5, whereas cooperators are transformed into de-
fectors if S < 5(T − 1)/3. Therefore, in the intermediate
region 5(T − 1)/3 < S < 3(T − 1)/5 planar fronts are
stable in the lattice with 8 neighbors. It is easy to check
that diagonal fronts are stable in this region as well. This
must be compared with the situation when there is a kink
in the front, as in

C C C D D D
C C C D D D
C C C D D D
C C C C D D
C C C C D D
C C C C D D

in this case the defector at the kink becomes a coopera-
tor if S > T − 1, and the cooperator at the kink becomes
a defector in the opposite case, S < T − 1. Therefore,
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Fig. 6. (Color online) Asymptotic density of cooperators x∗ in regular lattices with initial density of cooperators x0 = 1/3. The
degrees are k = 4 (left, A), k = 6 (middle, B) and k = 8 (right, C). The update rule is best response with p = 0.1. Equivalent
(symmetrical) results are obtained for x0 = 2/3 (see main text).

Fig. 7. (Color online) Snapshots of the evolution on a regular lattice of degree k = 8, under best response dynamics with
p = 0.1. Sites depicted in red are cooperators, blue ones are defectors. The initial density of cooperators is x0 = 1/3. The game
parameters are S = −0.6, T = 0.2, in the SH quadrant. Times are as indicated in the snapshots. System size is 100× 100 with
periodic boundary conditions. In this particular realization, cooperation eventually dominates entirely the lattice.

for this type of front there is no stability region and it
always advances in one direction or the other. This ana-
lysis shows that the fate of a specific realization depends
on the geometry of the clusters arising at its first stage.
What we see in the special region in Figure 6C is the re-
sult of some simulations that cannot reach full cooperation
because the growing clusters arrest at some point in the
simulations, whereas in other cases their geometry is such
(as in Fig. 7) that the system ends up dominated entirely
by cooperators. We note that the discussion is symmet-
rical with respect to the initial condition and it can be
applied to explain the results for x0 = 2/3 (not shown).

It remains to be explained why the other lattices do
not show this region of intermediate behavior. The reason
can again be traced back to the geometry of the clusters:
consider, for instance, the case with 4 neighbors. One can
then show that diagonal fronts are never stable and, in

fact, are subject to the same conditions as planar fronts
with a kink, making it much more difficult for a particu-
lar realization to have all its clusters arrested. Hence, in
the simulations on the lattice with 4 neighbors situations
with a mixed population of cooperators and defectors are
never found. A similar reasoning explains the results for
the 6 neighbor lattice.

The mechanism behind the appearance of the mixed
populations suggests that the coexistence of cooperators
and defectors in the SH may be due to finite size ef-
fects [32,33]. To check this possibility, we have simulated
the lattice with 8 neighbors on a large variety of sizes,
plotting a histogram of the number of realizations that
stop on a mixed population. The result is depicted in
Figure 8, showing clearly that as the system size grows
the number of asymptotically mixed realizations becomes
negligible. This is a strong indication that in the infinite
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Fig. 8. (Color online) Normalized histogram of the asymptotic
densities of cooperators x∗ reached in the simulations on reg-
ular lattices of degree k = 8 with initial density of cooperators
x0 = 1/3. The update rule is best response with p = 0.1. Sizes
are as indicated in the plot. Note that the value at x∗ = 1
goes out of range for the two largest sizes. S and T are as in
Figure 7.

Fig. 9. (Color online) Asymptotic density of cooperators x∗

in homogeneous random (left, A) and scale free (right, B) net-
works with initial density of cooperators x0 = 1/3. The update
rule is best response with p = 0.1. Equivalent (symmetrical)
results are obtained for x0 = 2/3.

size limit the 8 neighbor lattice will behave as those with
less neighbors, arriving always at the same asymptotics as
for the x0 = 0.5 initial condition, at least for initial data
not too close to x0 = 0 or x0 = 1. We note, however, that
for applications of these ideas to real life problems, where
populations (e.g., in a social context) are finite, it may be
possible to observe mixed populations in SH dilemmas un-
der best response dynamics, if the population is structured
spatially.

Finally we have also looked at the effect of initial con-
ditions on other network models besides regular lattices.
Two examples of our simulations are presented in Figure 9.
By comparing with the well mixed result in Figure 3A, we
see that initial conditions different from x0 = 0.5 also give
rise to non trivial effects on random and scale free lat-
tices. No regions of mixed populations are observed, and
the mean cooperation level increases slightly when going
from well mixed to homogeneous random and from there
to scale free networks, but always to a lesser extent than

on lattices. Unfortunately. the topology of these networks
renders the analysis in terms of clusters unapplicable. We
do not have a clear understanding of this small promotion
of cooperation (inhibition in the case x0 = 2/3) on these
networks, but we can tentatively hypothesize the devel-
opment of weak, long range correlations, which would be
responsible for such a weaker effect, in contrast to those
of lattices, of a short and stronger nature.

5 Discussion and conclusions

In this paper we have presented a thorough analysis of
myopic best response dynamics on 2 × 2 social dilemmas
with different types of networks. The original motivation
of our results was the clarification of the discrepancies
among the work of Hauert and Doebeli [25] and Sysi-Aho
et al. [26], who reported an inhibition (resp. promotion) of
cooperation in the SD game on square lattices. We have
shown that the problem is that the comparison is basi-
cally meaningless in so far as they use different update
rules (proportional update or replicator dynamics vs. best
response) and also because restricting the comparison to
SD games leads to missing the larger picture of the set
of possible dilemmas. Indeed, with the proportional up-
date rule there is a large increase of cooperation in the SH
quadrant, which contrasts with the phenomenology of the
SD dilemma (as is generically the case, see [10]).

Our analysis of myopic best response dynamics has
yielded two main results: first, there is practically no effect
of the type of network considered on the asymptotic be-
havior for any value of the game parameters; and, second,
there is a noticeable effect of the initial conditions with
particular importance in the case of lattices. The first re-
sult is most interesting, more so if viewed in the context of
previous work on imitative rules [10,11]. In principle, given
the definition of best response dynamics, one would not
expect important effects on the Harmony and PD quad-
rants, where there is only one global best response. Note
that this is also the outcome obtained on well-mixed pop-
ulations and on regular lattices with stochastic imitative
rules [10]. However, the fact that SD has only one stable
equilibrium of a mixed character, that may be difficult to
fulfill in the presence of a network, or the bistable nature
of SH allow to expect some influence from the interaction
networks. The fact that there is none (at least at a global
level, for the whole network; local peculiarities are not
being considered here) is therefore quite remarkable and
casts a shadow of doubt on the applicability of the stud-
ies of imitative rules to specific socio-economic contexts.
Indeed, if using a rule with a higher degree of intelligence
renders the network effect unnoticeable, one can presume
that the behavior of actual economic agents will be closer
to best response and hence network-independent to some
extent. Interestingly, this idea may be related to the fact
that models of network formation in economics often lead
to very simple networks (see, e.g., [30,31], and references
in the latter), which might be another hint of the sec-
ondary role played by the network structure in economical
applications.
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On the other hand, we have also seen that there are
network effects even under best response dynamics, that
arise in the dependence of the asymptotic behavior on
the initial conditions. Lattices are prominent examples of
these phenomena and, using the regularity of their struc-
ture, we have been able to trace the differences with well-
mixed populations to the formation of clusters, whose sta-
bility depends on the degree of the lattice (at least for
finite size lattices). We have thus seen that cooperation
may be promoted (resp. inhibited) in the SH quadrant in
situations when the initial amount of cooperators would
be insufficient (resp. sufficient) to take the system to full
cooperation. The effect is also observed on other networks,
always with the same symmetrical character, but the rea-
son for this behavior remains still an open issue. Again, in
an economical context this result is interesting because we
see that best response, when used on a network, exhibits
a dependence on the initial conditions different from that
of the well-mixed setting.

Finally, from a more general viewpoint, we have pre-
sented yet another example that the phenomenology of so-
cial dilemmas on networks is largely non universal. While
best response turns out to be peculiar in the sense that it
gives rise to network-independent behavior, it is important
to realize that once again changing the dynamics of the
strategy update leads to large, non-trivial changes in the
results of evolution as compared to other rules. Further-
more, as we have already mentioned, only a full study of
the whole space of dilemmas under consideration (in our
case, 2×2 games) can shed some light on the mechanisms
governing the evolution on different networks and under
different rules. In this sense, we have presented here a de-
tailed analysis of best response games which highlights the
fact that, as compared to what is observed on well-mixed
populations, the dilemma that is most affected is SH, i.e.,
risky situations, rather than contexts in which the impor-
tant tension is the temptation to defect. This is clearly
related to the bistable character of SH, in which the best
response tends to be equal to the opponent’s actions, and
suggests that similar mechanisms may be at work in games
and dilemmas with more players and/or strategies. Fur-
ther research along these lines is needed to confirm these
intuitions.
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9. G. Szabó, G. Fáth, Phys. Rep. 446, 97 (2007)
10. C.P. Roca, J.A. Cuesta, A. Sánchez, e-print arXiv:0806.

1649 (2008)
11. F.C. Santos, J.M. Pacheco, T. Lenaerts, Proc. Natl. Acad.

Sci. USA 103, 3490 (2006)
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